random variables

* A student 1s taking a true-false test and guessing when he doesn’t know
the answer. We are going to compute a score by subtracting a
percentage of the number of incorrect answers from the number of
correct answers. That is, for some number y, the student’s corrected
score will be

(number of corrected answers) — y(number of incorrect answers)
When we convert this “corrected score” to a percentage score, we want

its expected value to be the percentage of the material being tested that
the student knows. How can we do this?




G SNOE B R

MLE DTG FAMH K
PRAZA 1T

o TCHS5E

= Ap




‘_

I=

-

1. randomized algorithm

o RN LN LAFRErandomized algorithm ?

o H2 M ffrandomized algorithmf#jexpected running time?
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e [ts behavior is determined not only by its input but also by something
chosen randomly (e.g. values produced by a random-number
generator).

o H4 MY ffirandomized algorithmffJexpected running time ?
o ' Maverage-case running timeH {14 7|7 ?




|B)@l1: randomized algorithm

o RN LN LAFRErandomized algorithm ?

e [ts behavior is determined not only by its input but also by something
chosen randomly (e.g. values produced by a random-number
generator).

o H4 MY ffirandomized algorithmffJexpected running time ?

o ' Maverage-case running timeH {14 7|7 ?

e 5: We discuss the average-case running time when the probability
distribution 1s over the mputs to the algorithm, and we discuss the
expected running time when the algorithm itself makes random
choices.
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e Computational methods (pseudo-random number generators)

m_w = <choose-initializery; A must mot be zero &
m_z = <choose-initializer’; Ao must mot be zero %

uint get random()
{
m_z = JEYAY * (m_z & BBE3E) + (m_z > 18);
m_w = 18000 % (m_w & 6553580 + (m_w >> 16);
return (m_z << 16) + m_w; % J2-hif resulf "
1

e Physical methods
Coin flipping
Dice

Variations in the amplitude of atmospheric noise recorded with a normal radio




e

[BJ@R1: randomized algorithm (&)

o FREEAE B LE DT — B o 1 76 BN 2
PRUT AR X RE— A7V AT R 2




I=

1. randomized algorithm (%)

o PRAEAE BMRLE T — U H A T s BEAL AR ?
IRAAA PR IR A — AN VR R AF IR ?

®  PERMUTE-BY-SORTING(A)
1 n = A.length
2 let P[1..n]be anew array
3 fori = 1lton
4 P[i] = RanpoM(1,n?)
5 sort A, using P as sort keys

® RANDOMIZE-IN-PLACE(A)
1 n = A.length
2 fori =1ton
3 swap A[i] with A[RANDOM(i, n)]
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[BJ8R2: expected running time

o HATMIE, {RE4R T W7 R HE(X)?
o EX)=YxP(X=x) //EX
e E(X)=>E(X,) //indicator random variable
e E(aX+bY)=aE(X)+bE(Y) //linearity of expectation
e E(X)=) E(X|F,)P(F,) // conditional expected value
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Slower Quicksort(A,n)
if (n=1)
return the one item in A
else
Repeat
p = randomElement(A)
Let H be the set of elements greater than p; Let h = |H|
Let L be the set of elements less than or equal to p; Let £ = |L]
Until (|H| =n/4) and (|L| = n/4)
Ay = QuickSort(H,h)
= QuickSort(L,¥#)
return the concatenation of Ay and As

T(n) < E(r)n+T(a,n) +T((1 —a,)n)
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RandomSelect(A,i,n)
(selects the ith smallest element in set A, where n= |4 )
if (n=1)
return the one item in A
else

p = randomElement( A)
Let H be the set of elements greater than p
Let L be the set of elements less than or equal to p
If (H is empty)
put p in H
if (i< |L|)
Return RandomSelect(L,i,|L|)
else
Return RandomSelect(H,i — |L|,|H|).

1T(2n)+1T(n)+bn ifn>1
¥ 2
Tin) = { d ifn=1
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Exercise 5.6-4 Consider an algorithm that, given a list of nm numbers, prints them all out.
Then it picks a random integer between 1 and 3. If the number 15 1 or 2, it stops.
If the number 15 3 it starts again from the beginning. What is the expected running
time of this algorithm?

T'(n)= gi‘-ﬂ + %{m1 +T(n))
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o RE 2 Hfi#indicator random variable ?
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o (EIXUL|H| @A, indicator random variables3 7| o] LL& 4
27
e The expected number of times that we hire a new office assistant.
e The expected number of pairs of people with the same birthday.
e How many sixes do we expect to see on top if we roll 24 dice?

CERA, WRIEERE L, BATZ AT HER? D
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E[X] = E|) X
im1 Given a sample space S and an event A in the sample space S, let X4 = I {A}.
n Then E [X4] = Pr{A4}.
= E[X;]

i=1

o (EIXUL|H| @A, indicator random variables3 7| o] LL& 4
27
e The expected number of times that we hire a new office assistant.
e The expected number of pairs of people with the same birthday.
e How many sixes do we expect to see on top if we roll 24 dice?
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® Suppose that you want to output 0 with probability 1/2 and 1 with probability 1,/2.
At your disposal is a procedure BIASED-RANDOM, that outputs either 0 or 1. It
outputs 1 with some probability p and 0 with probability 1 — p, where 0 < p < 1,
but you do not know what p 1s. Give an algorithm that uses BIASED-RANDOM
as a subroutine, and returns an unbiased answer, returning 0 with probability 1/2

and 1 with probability 1/2. What is the expected running time of your algorithm
as a function of p?7
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® [UNBIASED-RANDOM()
Output: O with probability 1/2 and 1 with probability 1/2
1 while true do
2 a + BIASED-RANDOM()
3 b + BIASED-RANDOM()
4 if a < b then return 0
5 if a > b then return |

The algorithm calls BIASED-RANDOM twice to get two random numbers A and B. It repeats this until
A # B. Then, depending on whether A < B (thatis, A=0and B=1)orA > B (thatis,A=1and B=0) it
returns 0 or | respectively.

[n any iteration, we have Pr(A < B) = p(1 — p) = Pr(B < A), that is, the probability that the algorithm
returns 0 in that iteration equals to the probability that it returns 1 in that iteration. Since with probability 1
we return something at some point (and not repeat the loop endlessly) and the probabilities of returning 0
and 1 are equal in each iteration, the total probabilities of returning 0 and | must be 1/2 and 1/2 respectively.

o BT expected running time?

(-
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® [UNBIASED-RANDOMI()
Output: O with probability 1/2 and 1 with probability 1/2
1 while true do
2 a + BIASED-RANDOM()
3 b + BIASED-RANDOM()
4 if a < b then return 0
5 if a > b then return I

o BT expected running time?

The algorithms stops, if it either returns 0 or 1. In every iteration, the probability of this is Pr(A # B) =
Pr(A < B)+Pr(B < A)=2p(1 —p). Thus, we have a sequence of independent Bernoulli trials, each with
probability 2p(1 — p) of success. Therefore, the number of iterations required before the algorithm stops is
geometrically distributed with parameter 2p(1 — p). and the expected number of iterations is 1 /(2p(1 — p)).
As each iteration takes constant time (assuming that BIASED-RANDOM takes constant time), the expected
running time of the algorithm is @(1/(p(1—p))).

o y
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o YRIE P cumulative distribution function ?
‘E A R 5 ?
HATEOLT R 8818 FH cumulative distribution function ?
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