3-6 Decompositions of Graphs (Part II: DFS, SCC, Bicomponent)

Hengfeng Wei
hfwei@nju.edu.cn

November 05, 2018

The Power of the Hammer of DFS

$$
\text { Graph Traversal } \Longrightarrow \text { Graph Decomposition }
$$

Structure! Structure! Structure!

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN \dagger

Abstract

The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_{1} V+k_{2} E+k_{3}$ for some constants k_{1}, k_{2}, and k_{3}, where V is the number of vertices and E is the number of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search, spanning tree, strong-connectivity. "Depth-First Search And Linear Graph Algorithms", Robert Tarjan

> Tarjan's SCC Bicomponent

Theorem (Digraph as DAG)
 Every digraph is a dag of its SCCs.

Two tiered structure of digraphs:
digraph \equiv a dag of SCCs
SCC: equivalence class over reachability

Semiconnected Digraph (Problem 22.5-7)

$$
\begin{gathered}
G=(V, E) \\
\forall u, v \in V: u \leadsto v \vee v \leadsto u
\end{gathered}
$$

$$
\text { digraph } \equiv \text { a dag of SCCs }
$$

G is semiconnected \Longleftrightarrow The dag of SCCs is semiconnected

Is a DAG semiconnected?

A DAG is semiconnected $\Longrightarrow \exists$! topo. ordering

A DAG is semiconnected $\Longleftarrow \exists$! topo. ordering

DAG: Semiconnected $\Longleftrightarrow \exists$! topo. ordering

DAG: Semiconnected $\Longleftrightarrow \exists$! topo. ordering

Toposort + Check edges $\left(v_{i}, v_{i+1}\right)$

digraph \equiv a dag of SCCs

Lemma (22.14)
Let C and C^{\prime} be two SCCs in a digraph G.

$$
u \in C \rightarrow v \in C^{\prime} \Longrightarrow f[C]>f\left[C^{\prime}\right]
$$

$$
\begin{aligned}
& d[U]=\min _{u \in U} d[u] \quad f[U]=\max _{u \in U} f[u] \\
& \text { DAG } \Longrightarrow u \rightarrow v \Longleftrightarrow f[u]>f[v]
\end{aligned}
$$

Kosaraju's SCC algorithm, 1978
SCCs can be topo-sorted in decreasing order of their $f[\cdot]$.

The vertice v with the highest $f[v]$ is in a source SCC.

> (I) DFS on $G ; \quad$ DFS $/ \mathrm{BFS}$ on $G^{T}(f[\cdot] \downarrow)$
> (II) DFS on $G^{T} ; \quad$ DFS $/ \mathrm{BFS}$ on $G(f[\cdot] \downarrow)$

```
Definition (Biconnected Graph)
A connected undirected graph is biconnected if it contains no
"cut-nodes".
```

Definition (Biconnected Component (Bicomponent))
A bicomponent of an undirected graph is a maximal biconnected
subgraph.

Paritition of edges (not of nodes)

Theorem (Cut-nodes and Bicomponents)
Let $G_{i}=\left(V_{i}, E_{i}\right)$ be the bicomponents of a connected undirected graph $G=(V, E)$.
(a)

$$
\forall i \neq j:\left|V_{i} \cap V_{j}\right| \leq 1
$$

(b)

$$
v \text { is a cut-node } \Longleftrightarrow \exists i \neq j: v \in V_{i} \cap V_{j}
$$

The Power of the Hammer of DFS on Undirected Graphs

Theorem (Theorem 22.10)
In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.

Bicomp: Back!

Theorem (Characterization of Cut-nodes)

In a DFS tree, v is a cut-node

(a) v is the root and $\operatorname{deg}(v) \geq 2$
(b) v is not the root and some subtree of v has no back edge to a proper ancestor of v
(I) When and how to identify a bicomponent?

back $[v]$:

The earliest ancestor v can get
by following tree edges \mathbb{T} and back edges \mathbb{B}.
(II) When and how to initialize\&update back[v]?

back $[v]$:

The earliest ancestor v can get by following tree edges \mathbb{T} and back edges \mathbb{B}.

$$
\operatorname{back}[v]=\min \left\{\begin{array}{l}
\{v\} \\
\{w \mid(v, w) \in \mathbb{B}\} \\
\{\operatorname{back}[w] \mid(v, w) \in \mathbb{T}\}
\end{array}\right.
$$

tree edge $(\rightarrow v): \operatorname{back}[v]=d[v]$
back edge $(v \rightarrow w): \operatorname{back}[v]=\min \{\operatorname{back}[v], d[w]\}$
backtracking from $w: \operatorname{back}[v]=\min \{\operatorname{back}[v], \operatorname{back}[w]\}$
Backtracking from w to $v: \operatorname{back}[w] \geq d[v]$

After-class Exercise: Bicomp

1: procedure $\operatorname{Bicomp}(G)$
2: Here: Your Code Based on the DFS Framework

THANK YOU

Office 302
Mailbox: H016
hfwei@nju.edu.cn

