
3-6 Decompositions of Graphs
(Part II: DFS, SCC, Bicomponent)

Hengfeng Wei

hfwei@nju.edu.cn

November 05, 2018

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 1 / 21



The Power of the Hammer of DFS

Graph Traversal =⇒ Graph Decomposition

Structure! Structure! Structure!

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 2 / 21



“Depth-First Search And Linear Graph Algorithms”, Robert Tarjan

Tarjan’s SCC Bicomponent

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 3 / 21



Theorem (Digraph as DAG)
Every digraph is a dag of its SCCs.

Two tiered structure of digraphs:

digraph ≡ a dag of SCCs

SCC: equivalence class over reachability

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 4 / 21



Semiconnected Digraph (Problem 22.5-7)

G = (V, E)

∀u, v ∈ V : u ; v ∨ v ; u

digraph ≡ a dag of SCCs

G is semiconnected ⇐⇒ The dag of SCCs is semiconnected

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 5 / 21



Is a DAG semiconnected?

A DAG is semiconnected =⇒ ∃! topo. ordering

A DAG is semiconnected ⇐= ∃! topo. ordering

1 2 3 4 5 6 7

DAG: Semiconnected ⇐⇒ ∃! topo. ordering

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 6 / 21



DAG: Semiconnected ⇐⇒ ∃! topo. ordering

Toposort + Check edges (vi, vi+1)

1 2 3 4 5 6 7

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 7 / 21



digraph ≡ a dag of SCCs

Lemma (22.14)
Let C and C ′ be two SCCs in a digraph G.

u ∈ C → v ∈ C ′ =⇒ f[C] > f[C ′]

d[U ] = min
u∈U

d[u] f[U ] = max
u∈U

f[u]

DAG =⇒ u → v ⇐⇒ f[u] > f[v]

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 8 / 21



Kosaraju’s SCC algorithm, 1978
SCCs can be topo-sorted in decreasing order of their f[·].

The vertice v with the highest f[v] is in a source SCC.

(I) DFS on G; DFS/BFS on GT (f[·] ↓)

(II) DFS on GT ; DFS/BFS on G (f[·] ↓)

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 9 / 21



Definition (Biconnected Graph)
A connected undirected graph is biconnected if it contains no
“cut-nodes”.

Definition (Biconnected Component (Bicomponent))
A bicomponent of an undirected graph is a maximal biconnected
subgraph.

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 10 / 21



G

I

B

C

E

F

A D

H J

G

I

B

B

C

E

E

F

F

A D

H J

Paritition of edges (not of nodes)

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 11 / 21



G

I

B

B

C

E

E

F

F

A D

H J

Theorem (Cut-nodes and Bicomponents)
Let Gi = (Vi, Ei) be the bicomponents of a
connected undirected graph G = (V, E).

(a)
∀i ̸= j :

∣∣∣Vi ∩ Vj

∣∣∣ ≤ 1

(b)

v is a cut-node ⇐⇒ ∃i ̸= j : v ∈ Vi ∩ Vj

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 12 / 21



The Power of the Hammer of DFS on Undirected Graphs

Theorem (Theorem 22.10)
In a depth-first search of an undirected graph G, every edge of G is
either a tree edge or a back edge.

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 13 / 21



Cut-nodes? Bicomponents?

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 14 / 21



Bicomp: Back!

r

x

v

uw

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 15 / 21



r

z

v

w
x y

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 16 / 21



Theorem (Characterization of Cut-nodes)
In a DFS tree, v is a cut-node

⇐⇒

(a) v is the root and deg(v) ≥ 2
(b) v is not the root and some subtree of v has no back

edge to a proper ancestor of v

(I) When and how to identify a bicomponent?

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 17 / 21



back[v] :

The earliest ancestor v can get

by following tree edges T and back edges B.

(II) When and how to initialize&update back[v]?

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 18 / 21



back[v] :

The earliest ancestor v can get
by following tree edges T and back edges B.

back[v] = min


{v}

{w | (v, w) ∈ B}

{back[w] | (v, w) ∈ T}

tree edge (→ v): back[v] = d[v]
back edge (v → w): back[v] = min {back[v], d[w]}

backtracking from w: back[v] = min {back[v], back[w]}

Backtracking from w to v : back[w] ≥ d[v]

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 19 / 21



After-class Exercise: Bicomp

1: procedure Bicomp(G)
2: Here: Your Code Based on the DFS Framework

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 20 / 21



Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 21 / 21



Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 21 / 21



Office 302
Mailbox: H016

hfwei@nju.edu.cn

Hengfeng Wei (hfwei@nju.edu.cn) 3-6 Decompositions of Graphs November 05, 2018 21 / 21


