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expected approximation .75 | 15 ?

(i) Prob(A(z) € M(z)) =1, and (1) Prob(A(x) € M(z)) =1, and

(ii) Prob(Ra(z) < 8) > 1/2 (i) E|Ra(x)] <
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(i) Prob(A(z,8) € M(z)) = 1 {for every random choice
solution of U},
(ii) Prob(e 4(z,8) < 8) > 1/2 {a feasible solution, who

é

A computes a feasible

se relative error is at

most 8, is produced with the probability at least 1/2}, and
(i1i) Timea(x,671) < p(|z|,6 ') and p is a polynomial in |z|.
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e Contraction

. y ver(z, v) y

(a) (b)

“any edge contraction does not reduce the size of a minimal cut in G.”
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Random Contraction

Algorithm 5.3.5.1. RANDOM CONTRACTION

Input:
Output:
Step 1:
Step 2:

Step 3:

A connected multigraph G = (V, E).

a cut (V1,V3) of G.

Set, for every v € V, label(v) = {v}.

while G has more than 2 vertices

do begin choose uniformly at random an edge e = {z,y} € E(G);

G :=G/{e};
set label(z) = label(z) U label(y) for the new vertex z of
Gr

and replace the edges as described above
end
if G = ({u,v}, E') for a multiset E’,
then output(label(u), label(v)).




How about RC algorithm?

Theorem 5.3.5.2. RANDOM CONTRACTION 15 a polynomial-time random-
ized optimization algorithm that finds an optimal cut with a probability of at
least n(—?_ﬁ for any multigraph of n vertices.
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“the total number of edges of G is at least n - k/2”
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|aJ&R3: The Improvement of RC
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we see that the first contraction involves an edge from E(Cynin) with small
probabilities %, ;,—;3_—1—, }TE‘E’ ... . The key observation is that these probabilities
grow and may be very large (even 2/3 in the last contraction). The first nat-
ural idea could be to use RANDOM CONTRACTION to reduce G to some G/F
of | vertices and then t L

deterministic algorithm. In what follows we show that this approach beats the
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Algorithm 5.3.5.4. [-COMB-CONTRACT

Input:  a multigraph G = (V, E') on n vertices, n € IN.

Output: a cut (V1,13) of G.

Step 1: Apply RANDOM CONTRACTION on G in order to get a multigraph
G/F of l(n) vertices.

Step 2: Apply a deterministic algorithm to compute a minimal cut of G/F.
Output the corresponding cut of G.

|:IN—IN, 1< [(n)<n
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Theorem 5.3.5.5. For any function | : IN — IN, 1 < l(n) < n, the random-
ized algorithm |- COMB- CONTRACT works in time O(n”+(I(n))?), and it finds
a minimal cut with a probability of at least

Corollary 5.3.5.6. For every | : IN — IN, 1 < l(n) < n, z?:)) repetitions of

[-COMB-CONTRACT provide an optimal cut with probability at least 1 —1/e.
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» the best choice for [ is I(n) = |n2/3]
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Algorithm 5.3.5.7. RRC(G)

Input: A multigraph G = (V, E), |V| =n.
Output: A cut (V1,V5) of G.
Procedure: if n <6 then compute a minimal cut of G by a deterministic

method.

else begin & := {1 + n/\/2—i,
realize two independent runs of RANDOM CONTRACTION

on G in order to obtain multigraphs G/ F, and G/F3; of the
size h:

RRC(G/F1);

RRC(G/ F);

return the smaller of the two cuts produced by RRC(G/F1)
and RRC(G/FQ)

end.
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Theorem 5.3.5.8. The algorithm RRC works in O(n®log, n) time and finds
a minimal cut with a probability of at least
1
2 (log, n).
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e Random Contraction

e [-Comb-Contract
e Recursive Random Contraction
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(i) Execute the parts of the randomized computation where the probability of suc-

cess decreases drastically in a completely deterministic way. This approach may
be successful if the “derandomization” of these parts can be efficiently done.

(i) Do not execute a lot of complete independent runs of the algorithm on the
same input. Prefer to execute many independent runs of the computation parts
in which the probability of success drastically decreases, and only a few inde-
pendent runs of the computation parts, where the decrease of the probability
of success is almost negligible. This approach is especially efficient if the com-
putation parts essentially decreasing the success probability are short.
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