o AL 5] AR &Y [AL EL ik

PRALAT 1T

S Ay He A %

o JHEESE I H2/NTHER A5/

(-

BfR1-1: FEHULHE

AL

)

o {REfFrandomized d-approximationfirandomized §-

expected approximation .75 | 15 ?

(i) Prob(A(z) € M(z)) =1, and (1) Prob(A(x) € M(z)) =1, and

(ii) Prob(Ra(z) < 8) > 1/2 (i) E|Ra(x)] <

o XMMEIAZIAIFHAKR?

o YRELAERPTAS T 12

(i) Prob(A(z,8) € M(z)) = 1 {for every random choice
solution of U},
(ii) Prob(e 4(z,8) < 8) > 1/2 {a feasible solution, who

é

A computes a feasible

se relative error is at

most 8, is produced with the probability at least 1/2}, and
(i1i) Timea(x,671) < p(|z|,6 ') and p is a polynomial in |z|.

o 'BHMIPTASHIX A&t 4 ?

BRR1-2: PEYVIELE

o FHIBENEIEARAAL, 0] /5 5 2] g 1] LA AT
2 5EIE] 2

o FRACAL IF) @R P B ALY L S UL E A AT
2 5EIE] 2

o FENLEVEE B AT I EA € 5 il)
A4 62

IB]ER2 . Min-CUT

o U] FH S RIMFIEAMIn-CUT 0] @1 ? fR
PR 4 2

e Contraction

. y ver(z, v) y

(a) (b)

“any edge contraction does not reduce the size of a minimal cut in G.”

(-)

Random Contraction

Algorithm 5.3.5.1. RANDOM CONTRACTION

Input:
Output:
Step 1:
Step 2:

Step 3:

A connected multigraph G = (V, E).

a cut (V1,V3) of G.

Set, for every v € V, label(v) = {v}.

while G has more than 2 vertices

do begin choose uniformly at random an edge e = {z,y} € E(G);

G :=G/{e};
set label(z) = label(z) U label(y) for the new vertex z of
Gr

and replace the edges as described above
end
if G = ({u,v}, E') for a multiset E’,
then output(label(u), label(v)).

How about RC algorithm?

Theorem 5.3.5.2. RANDOM CONTRACTION 15 a polynomial-time random-
ized optimization algorithm that finds an optimal cut with a probability of at
least n(—?_ﬁ for any multigraph of n vertices.

o RIS BRI IBA e/ — IR B %k
Ejﬁyﬁﬁﬁép sl pvp

Prob (ﬂ::f E'uenti)

man 2
Prob(Event,) = E| = |E{Coman)| 1——-k—:- > 11— i =1-—

£ Bl 510y k-1/2 n

“the total number of edges of G is at least n - k/2”

(-

|aJ&R3: The Improvement of RC

e Random Contraction® £ 1] 8 TL1E15 2| 5t
R s A 7 U] B G IX AL HY)

e ?

we see that the first contraction involves an edge from E(Cynin) with small
probabilities %, ;,—;3_—1—, }TE‘E’ The key observation is that these probabilities
grow and may be very large (even 2/3 in the last contraction). The first nat-
ural idea could be to use RANDOM CONTRACTION to reduce G to some G/F
of | vertices and then t L

deterministic algorithm. In what follows we show that this approach beats the

18)8%4 : [-Comb-Contract

o [-Comb-Contracti = L AH ?

Algorithm 5.3.5.4. [-COMB-CONTRACT

Input: a multigraph G = (V, E') on n vertices, n € IN.

Output: a cut (V1,13) of G.

Step 1: Apply RANDOM CONTRACTION on G in order to get a multigraph
G/F of l(n) vertices.

Step 2: Apply a deterministic algorithm to compute a minimal cut of G/F.
Output the corresponding cut of G.

|:IN—IN, 1< [(n)<n

RINSER

Theorem 5.3.5.5. For any function | : IN — IN, 1 < l(n) < n, the random-
ized algorithm |- COMB- CONTRACT works in time O(n”+(I(n))?), and it finds
a minimal cut with a probability of at least

Corollary 5.3.5.6. For every | : IN — IN, 1 < l(n) < n, z?:)) repetitions of

[-COMB-CONTRACT provide an optimal cut with probability at least 1 —1/e.

2

0+ Umy") - e) = 0 (a:))z)

» the best choice for [is I(n) = |n2/3]

(-,

AL

BJRR5: RRCE;
e RRCH yEHAE?

Algorithm 5.3.5.7. RRC(G)

Input: A multigraph G = (V, E), |V| =n.
Output: A cut (V1,V5) of G.
Procedure: if n <6 then compute a minimal cut of G by a deterministic

method.

else begin & := {1 + n/\/2—i,
realize two independent runs of RANDOM CONTRACTION

on G in order to obtain multigraphs G/ F, and G/F3; of the
size h:

RRC(G/F1);

RRC(G/ F);

return the smaller of the two cuts produced by RRC(G/F1)
and RRC(G/FQ)

end.

RRCHIER

Theorem 5.3.5.8. The algorithm RRC works in O(n®log, n) time and finds
a minimal cut with a probability of at least
1
2 (log, n).

B)jR6: ELAITI8
o =R

e Random Contraction

e [-Comb-Contract
e Recursive Random Contraction

o PP AU RS 1) 2 R

B]§R7 . BB EIATRES
o I r] B fi7 2

(i) Execute the parts of the randomized computation where the probability of suc-

cess decreases drastically in a completely deterministic way. This approach may
be successful if the “derandomization” of these parts can be efficiently done.

(i) Do not execute a lot of complete independent runs of the algorithm on the
same input. Prefer to execute many independent runs of the computation parts
in which the probability of success drastically decreases, and only a few inde-
pendent runs of the computation parts, where the decrease of the probability
of success is almost negligible. This approach is especially efficient if the com-
putation parts essentially decreasing the success probability are short.

o

	计算机问题求解 – 论题4-15
	问题1-1：随机优化算法
	问题1-2：随机算法
	问题2：Min-CUT
	Random Contraction
	How about RC algorithm?
	问题3：The Improvement of RC
	问题4：l-Comb-Contract
	代价与结果
	问题5：RRC算法
	RRC的效果
	问题6：算法讨论
	问题7：随机算法策略

