4-7 Number-Theoretic Algorithms.

- \{ard. Magic $\}$
- CRT \& Generalized CRT.
- coprime testing

$$
\text { ECLPS } 31.2-9)
$$

- Analysis of Enclidean Alg. Enclid
(CIRS 31.2-5).

CRT \& cards - Numberphile.
l shuttles

$$
\frac{45}{4}<3^{\prime}
$$

$$
\begin{align*}
& m-2, m-1, m) \tag{m-2,n-1,m}\\
& (\operatorname{ards}) \\
& 2^{2}
\end{align*}
$$

After $\&$ shuttles:

$$
\begin{aligned}
& \text { CThe Magic Number) } \\
& l+r=11) \text { of shuffles) } \\
& \text { After r shuffles: }
\end{aligned}
$$

$1 \rightarrow l+1$ on stop $m-r$.

$$
\begin{aligned}
& l+1=m-r \\
& l+r=m-1 \\
& \Rightarrow m=12 ? ? ?
\end{aligned}
$$

It is: $l+1 \equiv m-r \quad(\bmod m)$

$$
\begin{aligned}
& x=\frac{\ell+r \equiv-1(\bmod w) \mid}{\pi \equiv-1(\bmod 4)} \\
& \text { CRT. }\left\{\begin{array}{l}
1=-1=-1(\bmod 3) \\
\equiv-1(\bmod 2)
\end{array}\right. \\
& \text { (kay Number.) } \\
& (\bmod 2) \text {. }
\end{aligned}
$$

CRT (cotollary 31.29).
$X \equiv a$ (mod $\left.n_{L}\right) \quad n_{1}, \cdots n_{R}$ are puiruvise relatively prime
$\Leftrightarrow x \equiv a$ (omod n). a is any integer.
CRT (cotrollary 31.29 generalized to non-popitme moduli).

$$
\begin{aligned}
x & \equiv a\left(\bmod n_{i}\right) \\
\Leftrightarrow x & \equiv a\left(\bmod \left[n_{1}, n_{2}, \cdots n_{i}\right]\right) .
\end{aligned}
$$

$$
\frac{\text { CRT }(\text { Thm } 31.27)}{c x+b ?}
$$

$$
\begin{aligned}
& x+b ? \\
& x \equiv a_{1} \quad\left(\bmod n_{1}\right) \\
& x \equiv a_{2} \quad\left(\bmod n_{2}\right) \\
& \vdots \equiv a_{k}\left(\bmod n_{k}\right)
\end{aligned}
$$

(1) The ni's are pairwise loprine.

$$
N=n_{1} \ldots n_{k}=\prod_{i=1}^{12 k} n_{i} .
$$

(2) ac's are inuegers.

Then there is a unique solution $(\bmod N)$.
Ef: Existence + uniqueness (onod N)
Existence

$$
x_{1} \equiv x_{2}(\bmod N)
$$

PFIMathod 1.
$\mathbb{R}: \mathbb{Z}_{N} \rightarrow$ Non-constructivie proot. $\mathbb{Z}_{n_{1} X} \mathbb{Z}_{n_{2}, X} \cdots \times \mathbb{Z}_{n_{k}}$.
$R=x \mapsto\left(x \bmod n_{1}, \ldots x \bmod n_{2}\right)$
It is injective. (uniqueness!). R: ring isomorphism.
\Rightarrow It is surjective $\left(\left|I_{N}\right|=\left|I_{n_{1}} \times \bar{Z}_{n_{2}} x \cdots I_{n_{k}}\right|\right)$

$$
\left\{\begin{array}{l}
x \equiv a_{1}\left(\bmod n_{1}\right) \quad n_{1}, n_{2}, \ldots n_{k} \text { pairuise coprime. } \\
x \equiv a_{2}\left(\bmod a_{2}\right) \\
x \equiv a_{k}\left(\bmod n_{k}\right)
\end{array}\right.
$$

Pf Method 2 (constructive proof)

$$
\begin{aligned}
& x \equiv a_{1} \cdot\left\{\begin{array} { l }
{ x _ { 1 } \equiv 1 (\operatorname { m o d } n _ { 1 }) } \\
{ x _ { 1 } \equiv 0 (\operatorname { m o d } n _ { 2 }) + a _ { 2 } } \\
{ x _ { 1 } \equiv 0 (\operatorname { m o d } n _ { k }) }
\end{array} \left\{\begin{array}{l}
x_{2} \equiv 0\left(\bmod n_{1}\right) \\
x_{2} \equiv 1\left(\bmod n_{2}\right) \\
x_{2} \equiv 0\left(\bmod n_{k}\right)
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
x_{k} \equiv 1 \text { (mal } \\
(\text { mod } n)
\end{array} \\
& y_{i} \cdot n_{k} \equiv 1\left(\bmod n_{i}\right) \\
& \begin{array}{c}
y_{i} \equiv M_{i}^{-1}\left(\bmod n_{i}\right) \\
M_{i}\left(n_{i}[\text { coprine })\right.
\end{array}
\end{aligned}
$$

CRT Example：（《身故英雄传》）第 $=+\alpha$ 回。

$$
\begin{aligned}
& \left\{\begin{array}{l}
x \equiv 2(\bmod 3) \\
x \equiv 3 \quad(\bmod 5) \\
x \equiv 2 \quad(\bmod 7)
\end{array}\right. \\
& X \equiv 23 \quad(\bmod 105) . \\
& x \equiv 3 \quad(\bmod 8) \\
& X \equiv 11(\bmod 20) \\
& X \equiv 1 \quad(\bmod 15) \\
& X \equiv 3(\bmod 8) \\
& \left\{\begin{array}{l}
x=11(\bmod 4) \Rightarrow x \equiv 3(\bmod 4) \\
x \equiv 11
\end{array}\right. \\
& \left\{\begin{array}{ll}
x \equiv 11 & (\bmod 5) \\
x \equiv 1 & (\bmod 3)
\end{array} \quad x \equiv 1(\bmod 5)\right. \\
& \begin{cases}x \equiv 1 & (\bmod 3) \\
x \equiv 1 & (\bmod 5)\end{cases}
\end{aligned}
$$

CRT（Generalized CRT Theorem）

$$
\left\{\begin{array}{c}
x \equiv a_{1}\left(\bmod n_{1}\right) \quad n_{1}, \ldots n_{k} \text { may be non-uptime } \\
\vdots \\
x \equiv a_{k}\left(\bmod n_{k}\right)
\end{array}\right.
$$

If $\quad a_{i} \equiv a_{j}\left(\bmod n_{k}\right)$
Then there is a unique solution $\bmod \left[n_{1}, n_{2}, \cdots n_{k}\right]$ ． 4
$19 x \equiv 556(\bmod 155)$

$$
1155=3 \cdot 5 \cdot 7 \cdot 11
$$

CRT Exercise.

$$
2^{400} \bmod 319 . \quad(319=11.29) .
$$

clos 31.2-9 (lo-prime).
prove that $n_{1}, n_{2}, n_{3}, n_{4}$ are pairwise no-prime it

$$
\frac{\left(n_{1} n_{2}, n_{3} n_{4}\right)}{p_{\text {air }}}=\left(n_{1} n_{3}, n_{2} n_{4}\right)=1
$$

More generally, show that $n_{1}, \ldots n_{k}$ are pairuise caprine rf a set of TIgk7 pairs of numbers derived from the n_{i} are relatively prime.

$$
\begin{aligned}
& (\underbrace{\square, \square l g k 7 .}_{\begin{array}{c}
\# \text { \& } \\
\text { pairs }
\end{array}}=(\square, \square)=(\square, \square)=1 \\
& k=4:\left(n_{1} n_{2}, n_{3} n_{4}\right)=\left(n_{1} n_{3}, n_{2} n_{4}\right)=1
\end{aligned}
$$

(complete graph).
Covering a complete graph using complete bipartite graphs.

$$
k=2: \quad\left(n_{1}, n_{2}\right)=1
$$

$\left(n_{1}, n_{2}, n_{3}\right)=\left(n_{2}, n_{3}\right)=1$

in class

$$
\text { Not }\left\{\begin{array}{l}
T(1)=0 \\
T(k)=2 T(k / 2)+1 \\
T(1)=0 \\
T(k)=1 T T(k / 2)+1
\end{array} \Rightarrow T(k)=k-1 .\right.
$$

Lower bound? $T(k) \geqslant^{\top} \mid g k T ?$
Pf. By strong mathmattial induetton on n. To coverkn, the firct bipartite gingraph is K_{p}, q.

$$
p+q=n \text {. }
$$

$$
\begin{aligned}
& \text { at least one of } p, q: \geqslant \Gamma / 2\rceil . \\
& \begin{aligned}
T(k) & \geqslant 1+\Gamma\left(\left\lceil\frac{k}{2}\right\rceil\right) \\
& \left.\geqslant 1+\Phi \Gamma \left\lvert\, g\left\lceil\frac{k}{2}\right\rceil\right.\right\rceil \\
& =\lceil\mid g k\rceil .
\end{aligned}
\end{aligned}
$$

Edge - lisjoint bipartite subgraph covering/partition.

$$
\pi(k)=k-1 .
$$

