4-4 Number Theory

Jun Ma

majun@nju.edu.cn

2021年3月31日

TJ 2-15(b,f)

For each of the following pairs of numbers a and b, calculate gcd(a, b) and find integers r and s such that gcd(a, b) = ra + sb.

(b) 234 and 165

$$gcd(234, 165) = 3$$

$$r = 12, s = -17$$

(f) -4357 and 3754

$$gcd(-4357, 3754) = 1$$

$$r = 1463, s = 1698$$

TJ 2-16

Let a and b be nonzero integers. If there exist integers r and s such that ar + bs = 1, show that a and b are relatively prime.

Suppose that gcd(a, b) = t, then $a = k_1t$, $b = k_2t$, $k_1, k_2 \neq 0$, then

$$ar + bs = t(k_1r + k_2s) = 1$$

4/19

Suppose that gcd(a, b) = t, then $a = k_1t$, $b = k_2t$, $k_1, k_2 \neq 0$, then

$$ar + bs = t(k_1r + k_2s) = 1$$

 $k_1r + k_2s \neq 0, \text{ so } t|1; \text{ therefore, } t=1$

TJ 2-19

Let $x,y\in\mathbb{N}$ be relatively prime. If xy is a perfect square, prove that x and y must both be perfect squares.

Assume

$$xy = p_1^{2k_1} p_2^{2k_2} \cdots p_t^{2k_t}, k_i \ge 0$$
$$x = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}, a_i \ge 0$$
$$y = p_1^{b_1} p_2^{b_2} \cdots p_t^{b_t}, b_i \ge 0$$

Assume

$$xy = p_1^{2k_1} p_2^{2k_2} \cdots p_t^{2k_t}, k_i \ge 0$$
$$x = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}, a_i \ge 0$$
$$y = p_1^{b_1} p_2^{b_2} \cdots p_t^{b_t}, b_i \ge 0$$

So,

$$\gcd(x,y) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_t^{\min(a_t,b_t)} = 1$$

Assume

$$xy = p_1^{2k_1} p_2^{2k_2} \cdots p_t^{2k_t}, k_i \ge 0$$
$$x = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}, a_i \ge 0$$
$$y = p_1^{b_1} p_2^{b_2} \cdots p_t^{b_t}, b_i \ge 0$$

So,

$$\gcd(x,y) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_t^{\min(a_t,b_t)} = 1$$

Therefore,

$$\min(a_i, b_i) = 0 \Rightarrow a_i = 0, b_i = 2k_i \text{ or } a_i = 2k_i, b_i = 0$$

So, x, y are both perfect squares.

TJ 2-29

Prove that there are an infinite number of primes of the form 6n + 5.

$$P = 6p_1p_2\cdots p_k + 5$$

$$P = 6p_1p_2\cdots p_k + 5$$

ightharpoonup Case 1: P is prime. Contradiction!

$$P = 6p_1p_2\cdots p_k + 5$$

- ightharpoonup Case 1: P is prime. Contradiction!
- ▶ Case 2 : $P = q_1q_2 \cdots q_s$, where each q_i is a prime.

$$P = 6p_1p_2\cdots p_k + 5$$

- ightharpoonup Case 1: P is prime. Contradiction!
- ▶ Case 2: $P = q_1q_2 \cdots q_s$, where each q_i is a prime.
 - ▶ Obviously, $q_i \neq 0, 2, 3, 4 \pmod{6}$

$$P = 6p_1p_2\cdots p_k + 5$$

- ightharpoonup Case 1: P is prime. Contradiction!
- ▶ Case 2 : $P = q_1q_2 \cdots q_s$, where each q_i is a prime.
 - ightharpoonup Obviously, $q_i \neq 0, 2, 3, 4 \pmod{6}$
 - ▶ Case 2.1: $\forall q_i, q_i = 1 \pmod{6}$. Then, $P = q_1 q_2 \cdots q_s = 1 \pmod{6}$, which is contradict to $P = 5 \pmod{6}$

$$P = 6p_1p_2\cdots p_k + 5$$

- ightharpoonup Case 1: P is prime. Contradiction!
- ▶ Case 2 : $P = q_1q_2 \cdots q_s$, where each q_i is a prime.
 - ightharpoonup Obviously, $q_i \neq 0, 2, 3, 4 \pmod{6}$
 - ▶ Case 2.1: $\forall q_i, q_i = 1 \pmod{6}$. Then, $P = q_1 q_2 \cdots q_s = 1 \pmod{6}$, which is contradict to $P = 5 \pmod{6}$
 - ▶ Case 2.2: $\exists q_i = p_t = 5 \pmod{6} \in S$. Then,

$$q_i|P \Rightarrow p_t|P \Rightarrow p_t|6p_1p_2\cdots p_k + 5 \Rightarrow p_t|5$$

$$P = 6p_1p_2\cdots p_k + 5$$

- ightharpoonup Case 1 : P is prime. Contradiction!
- ▶ Case 2 : $P = q_1q_2 \cdots q_s$, where each q_i is a prime.
 - ightharpoonup Obviously, $q_i \neq 0, 2, 3, 4 \pmod{6}$
 - ▶ Case 2.1: $\forall q_i, q_i = 1 \pmod{6}$. Then, $P = q_1 q_2 \cdots q_s = 1 \pmod{6}$, which is contradict to $P = 5 \pmod{6}$
 - ▶ Case 2.2: $\exists q_i = p_t = 5 \pmod{6} \in S$. Then,

$$q_i|P \Rightarrow p_t|P \Rightarrow p_t|6p_1p_2\cdots p_k + 5 \Rightarrow p_t|5$$

However $\forall p_t \in S, p_t > 5$. Contradiction!

$$P = 6p_1p_2\cdots p_k + 5$$

- ightharpoonup Case 1 : P is prime. Contradiction!
- ▶ Case 2: $P = q_1q_2 \cdots q_s$, where each q_i is a prime.
 - ▶ Obviously, $q_i \neq 0, 2, 3, 4 \pmod{6}$
 - ▶ Case 2.1: $\forall q_i, q_i = 1 \pmod{6}$. Then, $P = q_1 q_2 \cdots q_s = 1 \pmod{6}$, which is contradict to $P = 5 \pmod{6}$
 - ► Case 2.2: $\exists q_i = p_t = 5 \pmod{6} \in S$. Then,

$$q_i|P \Rightarrow p_t|P \Rightarrow p_t|6p_1p_2\cdots p_k + 5 \Rightarrow p_t|5$$

However $\forall p_t \in S, p_t > 5$. Contradiction!

▶ Case 2.3: $\exists q_i = 5$. Then

$$q_i|P \Rightarrow 5|6p_1p_2\cdots p_k + 5 \Rightarrow 5|6p_1p_2\cdots p_k \Rightarrow \exists p_t \in S, 5|p_t$$

Which is impossible, as p_t is a prime. Contradiction!

TJ 2-30

Prove that there are an infinite number of primes of the form 4n-1.

$$P = 4p_1p_2\cdots p_k + 3$$

$$P = 4p_1p_2\cdots p_k + 3$$

ightharpoonup Case 1 : P is prime. Contradiction!

$$P = 4p_1p_2\cdots p_k + 3$$

- ightharpoonup Case 1: P is prime. Contradiction!
- ▶ Case 2 : $P = q_1q_2 \cdots q_s$, where each q_i is a prime.

$$P = 4p_1p_2\cdots p_k + 3$$

- ightharpoonup Case 1: P is prime. Contradiction!
- ▶ Case 2 : $P = q_1q_2 \cdots q_s$, where each q_i is a prime.
 - ightharpoonup Obviously, $q_i \neq 0, 2 \pmod{4}$

$$P = 4p_1p_2\cdots p_k + 3$$

- ightharpoonup Case 1 : P is prime. Contradiction!
- ▶ Case 2 : $P = q_1q_2 \cdots q_s$, where each q_i is a prime.
 - ightharpoonup Obviously, $q_i \neq 0, 2 \pmod{4}$
 - ▶ Case 2.1: $\forall q_i, q_i = 1 \pmod{4}$. Then, $P = q_1 q_2 \cdots q_s = 1 \pmod{4}$, which is contradict to $P = 3 \pmod{4}$

$$P = 4p_1p_2\cdots p_k + 3$$

- ightharpoonup Case 1 : P is prime. Contradiction!
- ▶ Case 2 : $P = q_1q_2 \cdots q_s$, where each q_i is a prime.
 - ightharpoonup Obviously, $q_i \neq 0, 2 \pmod{4}$
 - ▶ Case 2.1: $\forall q_i, q_i = 1 \pmod{4}$. Then, $P = q_1 q_2 \cdots q_s = 1 \pmod{4}$, which is contradict to $P = 3 \pmod{4}$
 - ▶ Case 2.2: $\exists q_i = p_t \in S$. Then,

$$q_i|P \Rightarrow p_t|P \Rightarrow p_t|4p_1p_2\cdots p_k - 1 \Rightarrow p_t|3$$

$$P = 4p_1p_2\cdots p_k + 3$$

- ightharpoonup Case 1 : P is prime. Contradiction!
- ▶ Case 2 : $P = q_1q_2 \cdots q_s$, where each q_i is a prime.
 - ightharpoonup Obviously, $q_i \neq 0, 2 \pmod{4}$
 - ▶ Case 2.1: $\forall q_i, q_i = 1 \pmod{4}$. Then, $P = q_1 q_2 \cdots q_s = 1 \pmod{4}$, which is contradict to $P = 3 \pmod{4}$
 - ▶ Case 2.2: $\exists q_i = p_t \in S$. Then,

$$q_i|P \Rightarrow p_t|P \Rightarrow p_t|4p_1p_2\cdots p_k - 1 \Rightarrow p_t|3$$

However $\forall p_t \in S, p_t > 3$. Contradiction!

$$P = 4p_1p_2\cdots p_k + 3$$

- ightharpoonup Case 1 : P is prime. Contradiction!
- ▶ Case 2 : $P = q_1 q_2 \cdots q_s$, where each q_i is a prime.
 - ightharpoonup Obviously, $q_i \neq 0, 2 \pmod{4}$
 - ▶ Case 2.1: $\forall q_i, q_i = 1 \pmod{4}$. Then, $P = q_1 q_2 \cdots q_s = 1 \pmod{4}$, which is contradict to $P = 3 \pmod{4}$
 - ▶ Case 2.2: $\exists q_i = p_t \in S$. Then,

$$q_i|P \Rightarrow p_t|P \Rightarrow p_t|4p_1p_2\cdots p_k - 1 \Rightarrow p_t|3$$

However $\forall p_t \in S, p_t > 3$. Contradiction!

▶ Case 2.3: $\exists q_i = 3$. Then

$$q_i|P \Rightarrow 3|4p_1p_2\cdots p_k + 3 \Rightarrow 3|4p_1p_2\cdots p_k \Rightarrow \exists p_t \in S, 3|p_t$$

Which is impossible, as p_t is a prime. Contradiction!

If $a \cdot 133 - 2m \cdot 277 = 1$, does this guarantee that a has an inverse mod m? If so, what is it? If not, why not?

If $a \cdot 133 - 2m \cdot 277 = 1$, does this guarantee that a has an inverse mod m? If so, what is it? If not, why not?

Lemma 2.8

The equation

$$a \cdot_n x = 1$$

has a solution in Z_n if and only if there exist integers x and y such that

$$ax + ny = 1. (2.6)$$

If $a \cdot 133 - 2m \cdot 277 = 1$, does this guarantee that a has an inverse mod m? If so, what is it? If not, why not?

Lemma 2.8

The equation

$$a \cdot_n x = 1$$

has a solution in Z_n if and only if there exist integers x and y such that

$$ax + ny = 1. (2.6)$$

If $a \cdot 133 - 2m \cdot 277 = 1$, does this guarantee that a has an inverse mod m? If so, what is it? If not, why not?

Lemma 2.8

The equation

$$a \cdot_n x = 1$$

has a solution in Z_n if and only if there exist integers x and y such that

$$ax + ny = 1. (2.6)$$

$$n = m \ge 2, y = -544, a^{-1} = 133$$

If $a \cdot 133 - 2m \cdot 277 = 1$, does this guarantee that a has an inverse mod m? If so, what is it? If not, why not?

Lemma 2.8

The equation

$$a \cdot_n x = 1$$

has a solution in Z_n if and only if there exist integers x and y such that

$$ax + ny = 1. (2.6)$$

$$n = m \ge 2, y = -544, a^{-1} = 133$$

$$m = 1?$$

If $a \cdot 133 - 2m \cdot 277 = 1$, does this guarantee that a has an inverse mod m? If so, what is it? If not, why not?

Lemma 2.8

The equation

$$a \cdot_n x = 1$$

has a solution in Z_n if and only if there exist integers x and y such that

$$ax + ny = 1. ag{2.6}$$

$$n = m \ge 2, y = -544, a^{-1} = 133$$

$$m = 1?a^{-1} = 0$$

How many elements a are there such that $a \cdot_{31} 22 = 1$? How many elements a are there such that $a \cdot_{10} 2 = 1$?

How many elements a are there such that $a \cdot_{31} 22 = 1$? How many elements a are there such that $a \cdot_{10} 2 = 1$?

Corollary 2.16

For any positive integer n, an element a of Z_n has a multiplicative inverse if and only if gcd(a, n) = 1.

How many elements a are there such that $a \cdot_{31} 22 = 1$? How many elements a are there such that $a \cdot_{10} 2 = 1$?

Corollary 2.16

For any positive integer n, an element a of Z_n has a multiplicative inverse if and only if gcd(a, n) = 1.

▶ gcd(31, 22) = 1, 22 has one inverse in Z_{31}

How many elements a are there such that $a \cdot_{31} 22 = 1$? How many elements a are there such that $a \cdot_{10} 2 = 1$?

Corollary 2.16

For any positive integer n, an element a of Z_n has a multiplicative inverse if and only if gcd(a, n) = 1.

- ▶ gcd(31,22) = 1, 22 has one inverse in Z_{31}
- ▶ gcd(10,2) = 2, 2 has no inverse in Z_{10}

If $a \cdot 133 - m \cdot 277 = 1$, what can you say about all possible common divisors of a and m?

If $a \cdot 133 - m \cdot 277 = 1$, what can you say about all possible common divisors of a and m?

Theorem 2.15

Two positive integers j and k have greatest common divisor 1 (and thus are relatively prime) if and only if there are integers x and y such that jx + ky = 1.

If $a \cdot 133 - m \cdot 277 = 1$, what can you say about all possible common divisors of a and m?

Theorem 2.15

Two positive integers j and k have greatest common divisor 1 (and thus are relatively prime) if and only if there are integers x and y such that jx + ky = 1.

$$gcd(a, m) = 1$$

If k = jq + r, as in Euclid's division theorem, is there a relationship between gcd(q, k) and gcd(r, q)? If so, what is it?

If k = jq + r, as in Euclid's division theorem, is there a relationship between gcd(q, k) and gcd(r, q)? If so, what is it?

Theorem 2	1

(Euclid's Division Theorem) Let n be a positive integer. Then for every integer m, there exist unique integers q and r such that m = nq + r and $0 \le r < n$.

Lemma 2.13

If j, k, q, and r are positive integers such that k = jq + r, then

$$\gcd(j,k) = \gcd(r,j). \tag{2.7}$$

Notice that if m is negative, then -m is positive. Thus, by Theorem 2.12, -m = qn + r for $0 \le r < n$. This gives m = -qn - r. If r = 0, then m = q'n + r' for $0 \le r' \le n$ and q' = -q. However, if r > 0, then you cannot take r' = -r and have 0 < r' < n. Notice, though, that because you have already finished the case in which r = 0, you may assume that $0 \le n - r < n$. This suggests that if you were to take r' to be n-r, you might be able to find a q' so that m = q'n + r', with 0 < r' < n, which would let you conclude that Euclid's division theorem is valid for negative values m as well as for nonnegative values m. Find a q' that works, and explain how you have extended Euclid's division theorem from the version in Theorem 2.12 to the version in Theorem 2.1.

Theorem 2.12

(Euclid's Division Theorem, Restricted Version) Let n be a positive integer. Then for every nonnegative integer m, there exist unique integers q and r such that m = nq + r and $0 \le r < n$.

Theorem 2.1

(Euclid's Division Theorem) Let n be a positive integer. Then for every integer m, there exist unique integers q and r such that m = nq + r and $0 \le r < n$.

If m < 0, -m = qn + r, r = 0, then

$$m = -qn$$

Let q' = -q, r' = 0.

If m < 0, -m = qn + r, r > 0, then

$$m = -qn - r = -(q+1)n + (n-r)$$

Let q' = -(q+1), r' = n - r.

The least common multiple (LCM) of two positive integers x and y is the smallest positive integer z such that z is an integer multiple of both x and y. Give a formula for the least common multiple that involves the GCD.

$$xy = \gcd(x, y) \cdot \operatorname{lcm}(x, y)$$

$$x = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$$
, where $a_i \ge 0$

$$xy = \gcd(x, y) \cdot \operatorname{lcm}(x, y)$$

$$x = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$$
, where $a_i \ge 0$

$$y = p_1^{b_1} p_2^{b_2} \cdots p_t^{b_t}$$
, where $b_i \ge 0$

$$xy = \gcd(x, y) \cdot \operatorname{lcm}(x, y)$$

$$x = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$$
, where $a_i \ge 0$
 $y = p_1^{b_1} p_2^{b_2} \cdots p_t^{b_t}$, where $b_i > 0$

Then

$$\gcd(x,y) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_t^{\min(a_t,b_t)}$$
$$\operatorname{lcm}(x,y) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_t^{\max(a_t,b_t)}$$

$$xy = \gcd(x, y) \cdot \operatorname{lcm}(x, y)$$

$$x = p_1^{a_1} p_2^{a_2} \cdots p_t^{a_t}$$
, where $a_i \ge 0$

$$y = p_1^{b_1} p_2^{b_2} \cdots p_t^{b_t}$$
, where $b_i \ge 0$

► Then

$$\gcd(x,y) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_t^{\min(a_t,b_t)}$$
$$\operatorname{lcm}(x,y) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_t^{\max(a_t,b_t)}$$

So

$$xy = p_1^{a_1+b_1} p_2^{a_2+b_2} \cdots p_t^{a_t+b_t}$$

$$= p_1^{\min(a_1,b_1)+\max(a_1,b_1)} p_2^{\min(a_2,b_2)+\max(a_2,b_2)} \cdots p_t^{\min(a_t,b_t)+\max(a_t,b_t)}$$

$$= \gcd(x,y) \cdot \operatorname{lcm}(x,y).$$

Thank You!