
Go To Statement Considered Harmful

Edsger W. Dijkstra

Reprinted from Communications of the ACM, Vol. 11, No. 3, March 1968, pp. 147-148. Copyright

© 1968, Association for Computing Machinery, Inc.

This is a digitized copy derived from an ACM copyrighted work. It is not guaranteed to

be an accurate copy of the author's original work.

Key Words and Phrases:

go to statement, jump instruction, branch instruction, conditional clause, alternative

clause, repetitive clause, program intelligibility, program sequencing

CR Categories:

4.22, 6.23, 5.24

Editor:

For a number of years I have been familiar with the observation that the quality of programmers

is a decreasing function of the density of go to statements in the programs they produce. More

recently I discovered why the use of the go to statement has such disastrous effects, and I

became convinced that the go to statement should be abolished from all "higher level"

programming languages (i.e. everything except, perhaps, plain machine code). At that time I did

not attach too much importance to this discovery; I now submit my considerations for

publication because in very recent discussions in which the subject turned up, I have been urged

to do so.

My first remark is that, although the programmer's activity ends when he has constructed

a correct program, the process taking place under control of his program is the true

subject matter of his activity, for it is this process that has to accomplish the desired

effect; it is this process that in its dynamic behavior has to satisfy the desired

specifications. Yet, once the program has been made, the "making' of the corresponding

process is delegated to the machine.

My second remark is that our intellectual powers are rather geared to master static

relations and that our powers to visualize processes evolving in time are relatively poorly

developed. For that reason we should do our utmost to shorten the conceptual gap

between the static program and the dynamic process, to make the correspondence

between the program (spread out in text space) and the process (spread out in time) as

trivial as possible.

Let us now consider how we can characterize the progress of a process. If the program

text is a pure concatenation of assignment statements it is sufficient to point in the

program text to a point between two successive action descriptions. (In the absence of go

to statements I can permit myself the syntactic ambiguity in the last three words of the

previous sentence: if we parse them as "successive (action descriptions)" we mean

successive in text space; if we parse as "(successive action) descriptions" we mean

successive in time.) Let us call such a pointer to a suitable place in the text a "textual

index."

When we include conditional clauses (if B then A), alternative clauses (if B then A1 else

A2), choice clauses as introduced by C. A. R. Hoare (case[i] of (A1, A2,···, An)),or

conditional expressions as introduced by J. McCarthy (B1 -> E1, B2 -> E2, ···, Bn -> En),

the fact remains that the progress of the process remains characterized by a single textual

index.

As soon as we include in our language procedures we must admit that a single textual

index is no longer sufficient. In the case that a textual index points to the interior of a

procedure body the dynamic progress is only characterized when we also give to which

call of the procedure we refer. With the inclusion of procedures we can characterize the

progress of the process via a sequence of textual indices, the length of this sequence

being equal to the dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A or repeat A until B).

Logically speaking, such clauses are now superfluous, because we can express repetition

with the aid of recursive procedures. For reasons of realism I don't wish to exclude them:

on the one hand, repetition clauses can be implemented quite comfortably with present

day finite equipment; on the other hand, the reasoning pattern known as "induction"

makes us well equipped to retain our intellectual grasp on the processes generated by

repetition clauses. With the inclusion of the repetition clauses textual indices are no

longer sufficient to describe the dynamic progress of the process. With each entry into a

repetition clause, however, we can associate a so-called "dynamic index," inexorably

counting the ordinal number of the corresponding current repetition. As repetition clauses

(just as procedure calls) may be applied nestedly, we find that now the progress of the

process can always be uniquely characterized by a (mixed) sequence of textual and/or

dynamic indices.

The main point is that the values of these indices are outside programmer's control; they

are generated (either by the write-up of his program or by the dynamic evolution of the

process) whether he wishes or not. They provide independent coordinates in which to

describe the progress of the process.

Why do we need such independent coordinates? The reason is - and this seems to be

inherent to sequential processes - that we can interpret the value of a variable only with

respect to the progress of the process. If we wish to count the number, n say, of people in

an initially empty room, we can achieve this by increasing n by one whenever we see

someone entering the room. In the in-between moment that we have observed someone

entering the room but have not yet performed the subsequent increase of n, its value

equals the number of people in the room minus one!

The unbridled use of the go to statement has an immediate consequence that it becomes

terribly hard to find a meaningful set of coordinates in which to describe the process

progress. Usually, people take into account as well the values of some well chosen

variables, but this is out of the question because it is relative to the progress that the

meaning of these values is to be understood! With the go to statement one can, of course,

still describe the progress uniquely by a counter counting the number of actions

performed since program start (viz. a kind of normalized clock). The difficulty is that

such a coordinate, although unique, is utterly unhelpful. In such a coordinate system it

becomes an extremely complicated affair to define all those points of progress where, say,

n equals the number of persons in the room minus one!

The go to statement as it stands is just too primitive; it is too much an invitation to make

a mess of one's program. One can regard and appreciate the clauses considered as

bridling its use. I do not claim that the clauses mentioned are exhaustive in the sense that

they will satisfy all needs, but whatever clauses are suggested (e.g. abortion clauses) they

should satisfy the requirement that a programmer independent coordinate system can be

maintained to describe the process in a helpful and manageable way.

It is hard to end this with a fair acknowledgment. Am I to judge by whom my thinking

has been influenced? It is fairly obvious that I am not uninfluenced by Peter Landin and

Christopher Strachey. Finally I should like to record (as I remember it quite distinctly)

how Heinz Zemanek at the pre-ALGOL meeting in early 1959 in Copenhagen quite

explicitly expressed his doubts whether the go to statement should be treated on equal

syntactic footing with the assignment statement. To a modest extent I blame myself for

not having then drawn the consequences of his remark

The remark about the undesirability of the go to statement is far from new. I remember

having read the explicit recommendation to restrict the use of the go to statement to

alarm exits, but I have not been able to trace it; presumably, it has been made by C. A. R.

Hoare. In [1, Sec. 3.2.1.] Wirth and Hoare together make a remark in the same direction

in motivating the case construction: "Like the conditional, it mirrors the dynamic

structure of a program more clearly than go to statements and switches, and it eliminates

the need for introducing a large number of labels in the program."

In [2] Guiseppe Jacopini seems to have proved the (logical) superfluousness of the go to

statement. The exercise to translate an arbitrary flow diagram more or less mechanically

into a jump-less one, however, is not to be recommended. Then the resulting flow

diagram cannot be expected to be more transparent than the original one.

References:

1. Wirth, Niklaus, and Hoare C. A. R. A contribution to the development of ALGOL. Comm.
ACM 9 (June 1966), 413-432.

2. BÖ hm, Corrado, and Jacopini Guiseppe. Flow diagrams, Turing machines and languages
with only two formation rules. Comm. ACM 9 (May 1966), 366-371.

Edsger W. Dijkstra

Technological University

Eindhoven, The Netherlands

