- 教材讨论 - -JH第5章第3节第4小节 # 问题1: Neq-Pol Describing the idea of following algorithm. #### Algorithm 5.3.4.4. NEQ-POL ``` Input: Two polynomials p_1(x_1,\ldots,x_m) and p_2(x_1,\ldots,x_m) over \mathbb{Z}_n with at most degree d, where n is a prime and n>2dm. Step 1: Choose uniformly a_1,a_2,\ldots,a_m\in\mathbb{Z}_n at random. Step 2: Evaluate I:=p_1(a_1,a_2,\ldots,a_m)-p_2(a_1,a_2,\ldots,a_m). Step 3: if I\neq 0 then \mathrm{output}(p_1\not\equiv p_2) {accept} else \mathrm{output}(p_1\equiv p_2) {reject}. ``` What does step 2 means? Why? # Neq-Pol is one-sided error Monte Carlo algorithm Explain the basic idea of proving the following theorem. **Theorem 5.3.4.5.** Algorithm Neq-Pol is a polynomial time one-sided-error Monte Carlo algorithm that decides the nonequivalence of two polynomials. - If $$p_1 = p_2$$ $Prob(Neq-Pol rejects (p_1, p_2)) = 1$. - If $p_1 \neq p_2$ $$Prob(Neq-Pol accepts (p_1, p_2)) = Prob(p_1(a_1, \dots, a_m) - p_2(a_1, \dots, a_m) \neq 0) \geq 1 - \frac{m \cdot d}{n} \geq \frac{1}{2}$$. # 问题2: Fingerprinting Why is NEQ-POL an application of fingerprinting? we test whether the fingerprint $p_1(a_1, \ldots, a_n)$ of p_1 is identical to the fingerprint $p_2(a_1, \ldots, a_2)$ of p_2 for random a_1, \ldots, a_n . What is the concrete meanings of error Prob. for NEQ-POL? ## 问题3: EQ-1BPs #### What is 1BPs? Equivalence problem for one-time-only branching programs. The equivalence problem for one-time-only branching programs, Eq-1BP, is to decide, for two given one-time-only branching programs B_1 and B_2 , whether B_1 and B_2 represent the same Boolean function. One can represent a branching program in a similar way as a directed weighted graph²⁸ and so we omit the formal description of branching program representation.²⁹ #### EQ-1BP Input: One-time-only branching program B_1 and B_2 over a set of Boolean variables $X = \{x_1, x_2, x_3, \ldots\}$. Output: "yes" if B_1 and B_2 are equivalent (represent the same Boolean function), "no" otherwise. ### Constructing a Polynomial for a 1BP ### The Properties **Observation 5.3.4.7.** For every 1BP A over the set of variables $\{x_1, x_2, \ldots, x_m\}$, - (i) $p_A(x_1, \ldots, x_m)$ is a polynomial of degree at most 1 for every variable, - (ii) $p_A(a_1,\ldots,a_m)=A(a_1,\ldots,a_m)$ for every Boolean input $(a_1,\ldots,a_m)\in\{0,1\}^m$. **Lemma 5.3.4.8.** For every two 1BPs A and B, A and B are equivalent if and only if p_A and p_B are identical. ### Algorithm: NEQ-1BP What is the idea of the following algorithm? #### **Algorithm 5.3.4.9.** NEQ-1BP ``` Input: Two 1BPs A and B over the set of variables \{x_1, x_2, \ldots, x_m\}, m \in \mathbb{N}. ``` Step 1: Construct the polynomials p_A and p_B . Step 2: Apply the algorithm NEQ-POL on $p_A(x_1,\ldots,x_m)$ and $p_B(x_1,\ldots,x_m)$ x_m) over some \mathbb{Z}_n , where n is a prime that is larger than 2m. Output: The output of NEQ-POL. What is the essential strategy of NEQ-1BP?