- 教材讨论
 - -JH第5章第3节第4小节

问题1: Neq-Pol

Describing the idea of following algorithm.

Algorithm 5.3.4.4. NEQ-POL

```
Input: Two polynomials p_1(x_1,\ldots,x_m) and p_2(x_1,\ldots,x_m) over \mathbb{Z}_n with at most degree d, where n is a prime and n>2dm. Step 1: Choose uniformly a_1,a_2,\ldots,a_m\in\mathbb{Z}_n at random. Step 2: Evaluate I:=p_1(a_1,a_2,\ldots,a_m)-p_2(a_1,a_2,\ldots,a_m). Step 3: if I\neq 0 then \mathrm{output}(p_1\not\equiv p_2) {accept} else \mathrm{output}(p_1\equiv p_2) {reject}.
```

What does step 2 means? Why?

Neq-Pol is one-sided error Monte Carlo algorithm

 Explain the basic idea of proving the following theorem.

Theorem 5.3.4.5. Algorithm Neq-Pol is a polynomial time one-sided-error Monte Carlo algorithm that decides the nonequivalence of two polynomials.

- If
$$p_1 = p_2$$
 $Prob(Neq-Pol rejects (p_1, p_2)) = 1$.
- If $p_1 \neq p_2$
$$Prob(Neq-Pol accepts (p_1, p_2)) = Prob(p_1(a_1, \dots, a_m) - p_2(a_1, \dots, a_m) \neq 0) \geq 1 - \frac{m \cdot d}{n} \geq \frac{1}{2}$$
.

问题2: Fingerprinting

 Why is NEQ-POL an application of fingerprinting?

we test whether the fingerprint $p_1(a_1, \ldots, a_n)$ of p_1 is identical to the fingerprint $p_2(a_1, \ldots, a_2)$ of p_2 for random a_1, \ldots, a_n .

 What is the concrete meanings of error Prob. for NEQ-POL?

问题3: EQ-1BPs

What is 1BPs?

Equivalence problem for one-time-only branching programs.

The equivalence problem for one-time-only branching programs, Eq-1BP, is to decide, for two given one-time-only branching programs B_1 and B_2 , whether B_1 and B_2 represent the same Boolean function. One can represent a branching program in a similar way as a directed weighted graph²⁸ and so we omit the formal description of branching program representation.²⁹

EQ-1BP

Input: One-time-only branching program B_1 and B_2 over a set of Boolean variables $X = \{x_1, x_2, x_3, \ldots\}$.

Output: "yes" if B_1 and B_2 are equivalent (represent the same Boolean function),

"no" otherwise.

Constructing a Polynomial for a 1BP

The Properties

Observation 5.3.4.7. For every 1BP A over the set of variables $\{x_1, x_2, \ldots, x_m\}$,

- (i) $p_A(x_1, \ldots, x_m)$ is a polynomial of degree at most 1 for every variable,
- (ii) $p_A(a_1,\ldots,a_m)=A(a_1,\ldots,a_m)$ for every Boolean input $(a_1,\ldots,a_m)\in\{0,1\}^m$.

Lemma 5.3.4.8. For every two 1BPs A and B, A and B are equivalent if and only if p_A and p_B are identical.

Algorithm: NEQ-1BP

What is the idea of the following algorithm?

Algorithm 5.3.4.9. NEQ-1BP

```
Input: Two 1BPs A and B over the set of variables \{x_1, x_2, \ldots, x_m\}, m \in \mathbb{N}.
```

Step 1: Construct the polynomials p_A and p_B .

Step 2: Apply the algorithm NEQ-POL on $p_A(x_1,\ldots,x_m)$ and $p_B(x_1,\ldots,x_m)$

 x_m) over some \mathbb{Z}_n , where n is a prime that is larger than 2m.

Output: The output of NEQ-POL.

What is the essential strategy of NEQ-1BP?