3-10 NP 18 ¥

i

TRBEX 731X PR A XML 2

with hard problems only. We consider a problem to be hard if there is no
known deterministic algorithm {(computer program) that solves it efficiently.
Efficiently means in a low-degree polynomial time. Our interpretation of hard-
ness here is connected to the current state of our knowledge in algorithmics
rather than to the unknown, real difficulty of the problems considered. Thus,
a problem is hard if one would need years or thousands of years to solve it
by deterministic programs for an input of a realistic size appearing in the
current practice. This book provides a handbook of algorithmic methods that

constant k. Generally, we think of problems that are solvable by polynomial-time
algorithms as being tractable, or easy, and problems that require superpolynomial
time as being intractable, or hard.

2023/11/13 2

TR EE 1 157

Although NP-complete problems are confined to the realm of decision problems,
we can take advantage of a convenient relationship between optimization problems
and decision problems. We usually can cast a given optimization problem as a re-
lated decision problem by imposing a bound on the value to be optimized. For

m LAk [E) AN X Rz B9) <€ [6) R BE M

2023/11/13 g

LAREE B 2 /NP AP

Definition 2.3.3.21. NPO is the class of optimization problems, where U
(&1, Eo. L, L, M, cost, goal) € NPO if the following conditions hold:

(i) Ly € P,
(i) there erists a polynomial py such that
a) for every x € Ly, and every y € M(x), |y| < pu(|z|), and
b) there erists a polynomial-time algorithm that, for every y € L}, and
every x € L such that |y| < pu(|z|), decides whether y € M(z), and

{(#t1) the function cost is computable in polynomaial fime.
Informally, we see that an optimization problem U is in NPO if

(i} one can efficiently verify whether a string is an instance of U,

(ii) the size of the solutions is polynomial in the size of the problem instances
and one can verify in polynomial time whether a string y is a solution to
any given input instance x, and

(iii) the cost of any solution can be efficiently determined.

Definition 2.3.3.23. PO is the class of optimization problems U = (¥, X,
L, Ly, M, cost, goal) such that

(i} U € NPO, and
(i) there is a polynomial-time algorithm that, for every x € L;, computes an
optimal selution for x.

2023/11/13 4

BANATABZIMAAEA %!

= OBfRA, REM?
= SRREALH?

BANATABZIMAAEA %!

First, although we may reasonably regard a problem that requires time ©(n
to be intractable, very few practical problems require time on the order of such a
high-degree polynomial. The polynomial-time computable problems encountered
in practice typically require much less time. Experience has shown that once the
first polynomial-time algorithm for a problem has been discovered, more efficient
algorithms often follow. Even if the current best algorithm for a problem has a
running time of ©(n'°?), an algorithm with a much better running time will likely
soon be discovered.

100)

Second, for many reasonable models of computation, a problem that can be
solved in polynomial time in one model can be solved in polynomial time in an-
other. For example, the class of problems solvable in polynomial time by the serial
random-access machine used throughout most of this book is the same as the class
of problems solvable in polynomial time on abstract Turing machines.! It is also
the same as the class of problems solvable in polynomial time on a parallel com-
puter when the number of processors grows polynomially with the input size.

Third, the class of polynomial-time solvable problems has nice closure proper-
ties, since polynomials are closed under addition, multiplication, and composition.
For example, if the output of one polynomial-time algorithm is fed into the input of
another, the composite algorithm is polynomial. Exercise 34.1-5 asks you to show
that if an algorithm makes a constant number of calls to polynomial-time subrou-
tines and performs an additional amount of work that also takes polynomial time,
then the running time of the composite algorithm is polynomial.

2023/11/13 6

XN EERT AR

Lemima 34.1
Let O be an abstract decision problem on an instance set I, and let e¢; and e, be
polynomially related encodings on . Then, ¢,(Q) € P if and only if e,(Q) € P.

2023/11/13 7

N

XPNEBEEFABEX

Lemma 34.1
Let O be an abstract decision problem on an instance set I, and let e¢; and e, be
polynomially related encodings on . Then, ¢,(Q) € P if and only if e,(Q) € P.

5B U4 Zpolynomially related,

RBE 2645 7107
EXMIER T, AT TR R

2023/11/13 8

PRIBARIX EEARTE 1157
m (an algorithm) accepts (a string/language)
® (an algorithm) rejects (a string)

m (an algorithm) decides (language)

m acceptfldecide G+ A4 X H!?

2023/11/13 9

TRIEFRIXEATE 7157

m (an algorithm) accepts (a string/language)
® (an algorithm) rejects (a string)

m (an algorithm) decides (language)

m acceptfldecide G+ A4 X H!?
n A ANXBUATERR?
P = {L € {0.1}" : there exists an algorithm A that decides L
in polynomial time} .
In fact, P is also the class of languages that can be accepted in polynomial time.

Theorem 34.2
P = {L : L is accepted by a polynomial-time algorithm} .

2023/11/13 10

TRIEFRIXEATE 7157

m Certificate
m (an algorithm) verifies (a string/algorithm)

2023/11/13 11

TRIEFRIXEATE 7157

m Certificate
m (an algorithm) verifies (a string/algorithm)

m FHAM-CYCLEH,
certificate 21+4? falverify? FEEHLEES/?

2023/11/13 12

TRIEFRIXEATE 7157

m Certificate
m (an algorithm) verifies (a string/algorithm)

m FHAM-CYCLEH,
certificate 21+4? falverify? FEEHLEES/?

m FRTXEESF, certificate) BIZTA? tn{sverify?

® GRAPH-ISOMORPHISM SOL-IP
e CIRCUIT-SAT EQ-POL
e (3-CNF-)SAT EQ-1BP
e CLIQUE PRIM
e VERTEX-COVER

e SUBSET-SUM

2023/11/13 13

TRIEFRIXEATE 7157

m Certificate
m (an algorithm) verifies (a string/algorithm)

m FHAM-CYCLEH,
certificate 21+4? falverify? FEEHLEES/?

m FRTXEESF, certificate) BIZTA? tn{sverify?

® GRAPH-ISOMORPHISM SOL-IP
e CIRCUIT-SAT EQ-POL
® (3-CNF-)SAT EQ-1BP
e CLIQUE PRIM
e VERTEX-COVER
e SUBSET-SUM
B L ={xe{01}" : there exists a certificate y with |y| = O(|x|°)

such that A(x,y) = 1}.

2023/11/13 14

XA e B TNP, EE* !
=SB~ EI LR F NP
RIEESE 55 B2 WH?

L = {x €{0,1}" : there exists a certificate y with |y| = O(|x|")
such that A(x,y) =1} .

2023/11/13 15

1T 4P € NP?

1" : there exists an algorithm A that decides L
in polynomial time} .

}* : there exists a certificate y with |y| = O(|x|%)
such that A(x,y) =1} .

2023/11/13 16

HH44P € NP?

P = {L € {0,1}" : there exists an algorithm A that decides L
in polynomial time} .

L = {x €{0,1}" : there exists a certificate y with |y| = O(|x|")
such that A(x,y) =1} .

Moreover, if L € P, then L € NP, since if there is a polynomial-time algorithm
to decide L, the algorithm can be easily converted to a two-argument verification
algorithm that simply ignores any certificate and accepts exactly those input strings
it determines to be in L. Thus, P € NP.

2023/11/13 17

y\]’H‘ZP c NP’ P, = (r1 Vxa) A(Z1 VI VT3) A (T V 23) AT
m F—FI A

o HEM
o THEM

2 =1

Cooo | Coo1 | Coro | Co11 | Croo | C101 | Crio | Cina

accept

2023/11/13 18

RN HNP € PIL?

2023/11/13 19

TRIEFRIXEATE 7157

m Polynomial-time reducible

{0,1}*

{0,1}*

2023/11/13

{0,1}* f {0,1}*

{RIBFRIX L RIE 717 B

m Polynomial-time reducible P

a language L, is polynomial-time reducible to a language L., written L, <p L,
if there exists a polynomial-time computable function f : {0,1}* — {0,1}" such
that for all x € {0, 1}",

xe Lyifandonly if f(x) e L, . (34.1)

m EA—FZTXRE EEBHTAMR?

2023/11/13 21

ons 1 s o
{REB RRX L RIE 7157)
m Polynomial-time reducible
e |-

a language L, is polynomial-time reducible to a language L., written L, <p L,
if there exists a polynomial-time computable function f : {0,1}* — {0,1}" such
that for all x € {0, 1}",

xe Lyifandonly if f(x) e L, . (34.1)

s (ER—FITTEER, EEEHAMR?

m HHAHEL B MHAEL,—FEH?

2023/11/13 22

TRIEFRIXEATE 7157

m Polynomial-time reducible

{0,1}* f 10.13*
e Y
[
-~

a language L, is polynomial-time reducible to a language L., written L, <p L,
if there exists a polynomial-time computable function f : {0,1}* — {0,1}" such

that for all x € {0, 1}",

xe Lyifandonly if f(x) e L, .

s (ER—FITTEER, EEEHAMR?

(34.1)

m hHAHEL B MHEL—FEH?

X il (x)}

Y
Y
=

Az

Ay

yes, f(x) e L,

no, f(x) & L,

yes,x € L,

no, x € L,

2023/11/13 23

1R

{0,1}* !

IR fRIX L RE g

Polynomial-time reducible

a language L, is polynomial-time reducible to a language L., written L, <p L,
if there exists a polynomial-time computable function f : {0,1}* — {0,1}" such
that for all x € {0, 1}",

xe Lyifandonly if f(x) e L, . (34.1)
EA—TZTXR, EEEHAMRY

A AHEL EL MHAEL,—FEH?
e R E L, EERHEL,?

{0,1}*

2023/11/13

{0,1}* f {0,1}*

{RIBFRIX L RIE 717 B

m Polynomial-time reducible P

a language L, is polynomial-time reducible to a language L., written L, <p L,
if there exists a polynomial-time computable function f : {0,1}* — {0,1}" such
that for all x € {0, 1}",

xe Lyifandonly if f(x) e L, . (34.1)

s (ER—FITTEER, EEEHAMR?

A AHEL EL MHAEL,—FEH?
e R E L, EERHEL,?

. — . —— yes o
instance of polynomial-time instance [polynomial-time | T -———33 yis

of A reduction algorithm of B algorithm to decide B [=——l = 1o

polynomial-time algonthm to decide A

2023/11/13 25

TRIEFRIXEATE 7157

m NP-complete
m NP-hard

2023/11/13 26

TRIE AR LEARE g7

NP-complete
NP-hard
Alanguage L C {0,1}" is NP-complete if
1. L € NP, and
2. L' =p L for every L' € NP.

If a language L satisfies property 2, but not necessarily property 1, we say that L
is NP-hard. We also define NPC to be the class of NP-complete languages.

2023/11/13 27

TRIE AR LEARE g7

m NP-complete
m NP-hard
Alanguage L C {0,1}" is NP-complete if
1. L € NP, and
2. L' =p L for every L' € NP.

If a language L satisfies property 2, but not necessarily property 1, we say that L
is NP-hard. We also define NPC to be the class of NP-complete languages.

A AXF B

Theorem 34.4

If any NP-complete problem is polynomial-time solvable, then P = NP. Equiva-
lently, if any problem in NP is not polynomial-time solvable, then no NP-complete
problem is polynomial-time solvable.

2023/11/13 28

P =NP?

| A
II II
| NP-Hard / NP-Hard
P=NP=
NP-Complete

j

E

9l
P = NP P =NP

http://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/P_np_np-complete_np-hard.svg/500px-P_np_np-complete_np-hard.svg.png

2023/11/13 29

TRIB BRI UERR 1 17

Lemma 34.6

The circuit-satisfiability problem is NP-hard.

m {N{a#9i&reduction?
o HPRLEMY
o NI’

m N{aIuE AR B T T A i) Y

A | PC | aux machine state | x | ¥ | working storage
— T~ . -
M
--""-_--_,/"I --k""--.___
— _r’/r h_'“‘-x
A | l{ | aux machine state | x ¥ | w‘ntng storage

= o |

I o T
T - ""'--.._H
-— e B
A | pPC | aux machine state | x | ¥ | working storage
— —
T ——
- - - _.-"'J
- -
e = e

|
N
J___..--"""::::"’/ / \ \

A | PC | aux machine state | x ¥ | n*:#gst‘nagu|

T

0/1 output

2023/11/13 30

YaTiE B — 37 o) B 2NP-complete/hard?

Y0e]UE BR— 37 o) @@ NP-complete/hard ?

1. Prove L € NP.

Select a known NP-complete language L.

&

Describe an algorithm that computes a function f mapping every instance

x € {0,1}" of L' to an instance f(x) of L.

4. Prove that the function f satisfies x € L’ if and only if f(x) € L for all
x € {0,1}.

5. Prove that the algorithm computing f runs in polynomial time.

[F8

2023/11/13 32

TRIB X sk 1 g7

CIRCUIT-SAT

3-CNF-SAT

i T
(SUBSET SUM)

2023/11/13 33

PRIEARL TN o) &5 8] Byreduction 7 1,7

m CIRCUIT-SAT <, SAT

> > > > > > >

-14_4—?*_'-13}
Xs < (X1 Vv x2))

Xg <> _"'14.}

Xg < (x5 V Xxg))

(

(

(

(X7 < (x; A XA Xy))
(

(X0 «= (X6 V X7))

(

X1g < (X7 A Xg A Xg)) .

2023/11/13 34

PRIEARL TN o) &5 8] Byreduction 7 1,7

m SAT <, 3-CNF-SAT

b =((x; = x2) v —=((—x; < X3) V X4)) A X2

¢ =y A e (24 x))
- A (Y2 = (yaV ya)
A (ys = (X — X2))
A (Yg < Ys)
A (Vs < (Ve V X))

Ao ve = (—xg = x3)) .

¢

Y1 V2 Xz | (V1 < (¥2 A—X2))

1 1 1 0

1 1 0 1

| 0 1 0

1 0 0 0

0 1 1 |

0 1 0 0

0 0 1 |

0 0 0 1 @ = (=¥ VvV oy Vv oxg) A(SY VY VX))
‘ A=V Y2V X)) A1V e VX)),

If C; has 2 distinct literals, that is, if C; = (I, v [;), where I, and [, are literals,

then include ({y v L v p) A (I v [o v —p) as clauses of ¢".

2023/11/13 35

PRIEARL TN o) &5 8] Byreduction 7 1,7

m 3-CNF-SAT <, CLIQUE

d=(x;V-xV-ox3)A(—x; VX2 VIx)A (X VIVxs)

¢

Cp =X Vs v Xy

Co=—X; VX2V X3 Ci=x, VX2V X3

2023/11/13 36

PRIEARL TN o) &5 8] Byreduction 7 1,7

m CLIQUE <, VERTEX-COVER

PRIZ R DU P (o) @8] Byreduction 7 1L ?

= HAM-CYCLE <, TSP

PRIZER DU P (o) @8] Byreduction 7 1L, 7

m 3-CNF-SAT <, SUBSET-SUM

¢ = C1AC2AC3ACq, where C1 = (x1vV—x2VvV—x3), C2 = (—x1VvV—x2v—x3), C3 = (—x1Vv—x2Vvx3), and Cq4 = (x1 V x2 V x3).

4

Xy X2 X3 C] Cz Cj C;

w = 1 0 0 1 0 0 |1
= 1 0 0 0 1 1 0
v = 0 1 0 0 0 0 |1
1'; = 0 1 0 1 1 1 0
¥ = 0 0 1 0 1] 1 1
v, = 0 0 1 1 1 0 0
5n = 0 0 0 1 1] 1] 0
.';'; = 0 0 0 2 0 0 0
s = 0 0 0 0 1 0 0
o= 0 0 0 0 2 0 0
53 = 0 0 0 0 1] 1 0
5, = 0 0 0 0 0 2 0
5y = 0 0 0 0 1] 1] 1
.'5'; — 0 0 0 0 1] 1] 2
t = 1 1 1 4 4 4 4

2023/11/13 39

OT

= FRATHNBERNEEED2MEMRE, FIRERYL. P.
NPZ [BHIR A,

2023/11/13 40

	3-10 NP完全理论初步
	你能区分这两种“难”吗？
	你理解这段话了吗？
	优化问题有自己的“NP”和“P”
	我们为什么用多项式作为分界线？
	我们为什么用多项式作为分界线？
	这个定理有什么意义？
	这个定理有什么意义？
	你理解这些术语了吗？
	你理解这些术语了吗？
	你理解这些术语了吗？
	你理解这些术语了吗？
	你理解这些术语了吗？
	你理解这些术语了吗？
	这个问题属于NP，它真**呀！
	为什么P ⊆ NP？
	为什么P ⊆ NP？
	为什么P ⊆ NP？
	你认为NP ⊆ P吗？
	你理解这些术语了吗？
	你理解这些术语了吗？
	你理解这些术语了吗？
	你理解这些术语了吗？
	你理解这些术语了吗？
	你理解这些术语了吗？
	你理解这些术语了吗？
	你理解这些术语了吗？
	你理解这些术语了吗？
	P = NP？
	你理解这个证明了吗？
	如何证明一个新问题是NP-complete/hard？
	如何证明一个新问题是NP-complete/hard？
	你理解这张图了吗？
	你理解以下两个问题间的reduction了吗？
	你理解以下两个问题间的reduction了吗？
	你理解以下两个问题间的reduction了吗？
	你理解以下两个问题间的reduction了吗？
	你理解以下两个问题间的reduction了吗？
	你理解以下两个问题间的reduction了吗？
	OT

