3－2 Greedy

Jun Ma

majun＠nju．edu．cn

2020年9月24日

TC 16．1－2

Suppose that instead of always selecting the first activity to finish，we instead select the last activity to start that is compatible with all previously selected activities．Describe how this approach is a greedy algorithm，and prove that it yields an optimal solution．

证明．
It is a dual problem．

TC 16．1－3

Not just any greedy approach to the activity－selection problem produces a maximum－size set of mutually compatible activities．
－selecting the activity of least duration from among those that are compatible with previously selected activities does not work．

－selecting the compatible activity that overlaps the fewest other remaining activities

－selecting the compatible remaining activity with the earliest start time．
\square

TC 16．2－1

Prove that the fractional knapsack problem has the greedy－choice property．

In the fractional knapsack problem，the thief can take frac－ tions of items，rather than having to make a binary（0－1）choice for each item．

TC 16．2－1

证明．

－Let item item $_{i}$ be one with greatest v_{i} / w_{i}
－Given an optimal solution opt
－if opt takes all item $_{i}$ or it only takes item $_{i}$ ，
－otherwise，let $W_{\text {other }}=W-u_{i}, w_{i}^{\prime}=w_{i}-u_{i}$ ．Here，u_{i} indicates the units of $i t e m_{i}$ in opt
－replace min $\left(W_{\text {other }}, w_{i}^{\prime}\right)$ units of other items in opt with item $_{i}$ ．
－after replacement，we should also obtain an optimal solution．

TC 16．2－2

Give a dynamic－programming solution to the 0－1 knapsack problem that runs in $O(n W)$ time，where n is the number of items and W is the maximum weight of items that the thief can put in his knapsack．

Answer．
Let $d p[i, w]$ record the maximum value can be obtained by taking only items from 1 to i without exceeding the weight limit w ．

$$
d p[i, w]=\max \left(d p[i-1, w], \max _{k<i}\left(d p\left[k, w-w_{i}\right]+p_{i}\right)\right)
$$

背包问题九讲

背包问题九讲 2.0 beta1．2

> 崔添翼 (Tianyi Cui)*

2012－05－08 ${ }^{\dagger}$

本文题为《背包向题九汫》，从原于《动态规划的思考艺术》䒺列。
这系列文章的第一版于 2007 年下半年使用 EmacsMuse 制作，以 HTML 格式发布到网上，转载众多，有一定影晌力。

2011 年 9 月，本系列文章由原作者用 $\mathrm{LKT} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ 重新制作并全面修订，您现在省到的是
2.0 beta 版本，修订历史及最新版本请访问 hittps：／／github，com／tianytcut／pack 查阅。

本文版权归原作者所有，采用 CC BY－NC－SA 协议发布。

Contents

101 背包问题 3
1.1 题目。
1.2 基本思路
1.3 优化空间复杂度
1.4 初娼化的细节问题
1.5 一个常数优化
1.6 小结

2 完全背包问题
2.1 跒目 …… 5
2.2 基本思路
2.2 共本思路 …．．．
2.4 转化为 01 背包问题求解
$2.5 O(V N)$ 的算法
2.6 小结

3 多重背包问题
3.1 题目。
3.2 基本算法
3.3 转化为 01 背包问题
3.4 可行性问题 $O(V N)$ 的算 \qquad
$\cdots \ldots \ldots . .$.
＊a．k．a．dd engi
${ }^{1}$ Build 20120508120000
3.5 小结 9
4 混合三种背包问题 9
4.1 问題 9
4.201 背包与完全背包的混合 9
4.4 小结 10
5 二维费用的背包问題 10
5.1 问超 10
5.2 算法 10
5.3 物品总个数的限制 10
5.4 攵整数域上的背包向斯 11
11
6 分组的背包问题 11
6.1 问題 11
6.2 算法
6.3 小结 11
7 有倲赖的背包问题 12
7.1 简化的问题 12 12
7.2 算法
7.2 算法
7.4 小结 13
8 泛化物品 13
13
8.1 定义
8.2 位化物品的和 13
8.3 背包问题的泛化物品 14
8.4 小结
14
背包问題问法的变化 14
9.1 输出方策
14
15
9.2 输出字具序最小的最优方案 15
9.4 最优方案的总数 16
9.5 求次优解，第 K 优解17
https：／／raw．githubusercontent．com／tianyicui／pack／master／V2．pdf

TC 16．3－2

Prove that a binary tree that is not full cannot correspond to an optimal prefix code．
Full Binary Tree：every nonleaf node has two children

（b）
证明。
Replace the node（that has only one child）with its subtree would yield a better solution．

TC 16．3－5

Prove that if we order the characters in an alphabet so that their frequencies are monotonically decreasing，then there exists an optimal code whose codeword lengths are monotonically increasing．

Hint

Monotonicity

A function $f(n)$ is monotonically increasing if $m \leq n$ implies $f(m) \leq f(n)$ ． Similarly，it is monotonically decreasing if $m \leq n$ implies $f(m) \geq f(n)$ ．A function $f(n)$ is strictly increasing if $m<n$ implies $f(m)<f(n)$ and strictly decreasing if $m<n$ implies $f(m)>f(n)$ ．
$>c_{1} . f \geq c_{2} . f \geq \cdots \geq c_{n} . f$
$-T$ ：an optimal code for $c_{1}, c_{2}, \cdots, c_{n}$
－Try to show $\forall i<j, d_{T}\left(c_{i}\right) \cdot l \leq d_{T}\left(c_{j}\right) \cdot l$
－Can be easily proved by contradiction．

TC 16．3－8

Suppose that a data file contains a sequence of 8 －bit characters such that all 256 characters are about equally common：the maximum character frequency is less than twice the minimum character frequency． Prove that Huffman coding in this case is no more efficient than using an ordinary 8－bit fixed－length code．

证明。
－$\forall i \forall j \forall k\left(c_{i} . f r e q+c_{j} . f r e q>c_{k} . f r e q\right)$
－So，there must be 128 internal nodes with 2 leaves
－$\forall i \forall j \forall k \forall l\left(1 / 2<\frac{c_{i} \cdot f r e q+c_{j} \cdot f r e q}{c_{k} \cdot f r e q+c_{l} \cdot f r e q}<2\right)$
－So，the maximum combined character frequency is less than twice the minimum combined character frequency．
－Recursively，we could show that the tree is a perfect binary tree．

TC Problem 16－1（Coin changing）

Consider the problem of making change for n cents using the fewest number of coins．Assume that each coin＇s value is an integer．

Question－A

Describe a greedy algorithm to make change consisting of（Q）uarters， （D）imes，（N）ickels，and（P）ennies．Prove that your algorithm yields an optimal solution．

The Algorithm
－Always give the highest denomination coin that you can without going over．
－Then，repeat this process until the amount of remaining change drops to 0 ．

Optimal substructure
Naive

Greedy－choice property

An optimal solution to make change for n cents includes one coin of value c ，where c is the largest coin value such that $c \leq n$ ．

Proof of greedy－choice．

－Case 1：If this optimal solution includes a coin of value c ，then we are done．
－Case 2 Otherwise，this optimal solution does not include a coin of value c ．We have four cases：
（1）$n<5$ ：A solution consists only of $\mathbf{P s}$ ．（should be Case 1）
（2） $5 \leq n<10$ ：Replace five $\mathbf{P s}$ by one \mathbf{N} ．
（3） $10 \leq n<25$ ：Some subset of the $\mathbf{N s}$ and $\mathbf{P s}$ in this solution adds up to 10 cents，and so we can replace these $\mathbf{N s}$ and $\mathbf{P s}_{\mathrm{s}}$ by a \mathbf{D} ．
（4） $25 \leq n$ ：
（a）\＃dime \geq 3： 3 dims $\rightarrow 1$ quarter＋1 nickel
（b）$\# \operatorname{dim} \leq 2$ ：some subset of the dimes，nickels，and pennies adds up to 25 cents，and so we can replace these coins by one \mathbf{Q} ．

Question－B

Suppose that the available coins are in the denominations that are powers of c ，i．e．，the denominations are $c^{0}, c^{1}, \cdots, c^{k}$ for some integers $c>1$ and $k \geq 1$ ．Show that the greedy algorithm always yields an optimal solution．

Optimal substructure
－Naive！

Greedy－choice property

There is an optimal solution to make change for n cents includes one coin of value q ，where $q=c^{k}$ is the largest coin value such that $q \leq n$ ．

For any coin set T ，if $c^{k} \leq \sum_{x \in T}=n<c^{k+1}$ and $\forall x \in T, x<c^{k}$ ，then， there is a subset S of T s．t．$\sum_{x \in S}=c^{k}$ ．

Proof of Lemma1．

Induction on k
－B：$k=0$ ，then $T=\underbrace{\{1, \cdots, 1}_{n}\}$ ，which is obviously true
－H：for all $k<i$ the lemma holds
－ $\mathbf{I}: k=i+1$
－partition T into c subsets $T_{1}, \cdots T_{c}$ s．t．$c^{i} \leq \sum_{x \in T_{j}}<c^{i+1}$ ．
－By H，for each T_{j} we could find a subset S_{j} s．t．$\sum_{x \in S_{j}}=c^{i}$ ．
－We find a subset S of T s．t．$S=\bigcup_{j=1, \ldots, c} S_{j}$ and $\sum_{x \in S}=c^{i+1}$

Greedy－choice property
There is an optimal solution to make change for n cents includes one coin of value q ，where $q=c^{k}$ is the largest coin value such that $q \leq n$ ．

Proof by contradiction．
－Assume there is a n and all optimal solutions to make change for n cents do not include any coin of value q ，where $q=c^{k}$ is the largest coin value such that $q \leq n$ ．
－We could find a subset S of T s．t．$\sum_{x \in S}=c^{k}$ ．（by Lemma（1））
－Replace S with a coin c^{k} would yield a better solution．（Conflict！）

Another proof

引理（2）

Given an optimal solution $\left(x_{0}, x_{1}, \cdots, x_{k}\right)$ where x_{i} indicates the number of coins of denomination c^{i} ．Then we must have $x_{i}<c$ for every $i<k$ ．

Proof of Lemma2．

－Suppose that we had some $x_{i} \geq c$ ，then，we could decrease x_{i} by c and increase x_{i+1} by 1 ．
－This collection of coins has the same value and has $c 1$ fewer coins， so the original solution must of been non－optimal．

Greedy－choice property

There is an optimal solution to make change for n cents includes one coin of value q ，where $q=c^{k}$ is the largest coin value such that $q \leq n$ ．

Proof by contradiction．
－Assume there is a n and all optimal solutions to make change for n cents do not include any coin of value q ，where $q=c^{k}$ is the largest coin value such that $q \leq n$ ．
－However，as $x_{i}<c$ for every $i<k$（by Lemma2），

$$
\sum_{0 \leq i<k} x_{i} c^{i}<c^{k} \leq n, \text { Conflict! }
$$

Question－C

Give a set of coin denominations for which the greedy algorithm does not yield an optimal solution．Your set should include a penny so that there is a solution for every value of n ．

Answer

Try to make change for 8 cents with coins in $\{1,4,5\}$

Question－D

Give an $O(n k)$－time algorithm that makes change for any set of k different coin denominations，assuming that one of the coins is a penny．

Answer
－$c[i]$ ：the minimum number of coins needed to make change for i cents．

$$
c[i]=\min _{1 \leq j \leq k}\left(c\left[i-v_{j}\right]\right)+1
$$

Thank You！

