3-2 Greedy

Jun Ma

majun@nju.edu.cn

2020年9月24日

Jun Ma (majun@nju.edu.cn)

Suppose that instead of always selecting the **first** activity to finish, we instead select the **last** activity to start that is compatible with all previously selected activities. Describe how this approach is a greedy algorithm, and prove that it yields an optimal solution.

证明. It is a dual problem.

TC 16.1-3

Not just any greedy approach to the activity-selection problem produces a maximum-size set of mutually compatible activities.

- selecting the activity of least duration from among those that are compatible with previously selected activities does not work.
- selecting the compatible activity that overlaps the fewest other remaining activities

 selecting the compatible remaining activity with the earliest start time.

TC 16.2-1

Prove that the fractional knapsack problem has the greedy-choice property.

In the **fractional knapsack problem**, the thief can take fractions of items, rather than having to make a binary (0-1) choice for each item.

TC 16.2-1

证明.

- Let item $item_i$ be one with greatest v_i/w_i
- Given an optimal solution opt
 - ▶ if opt takes all $item_i$ or it only takes $item_i$, ✓
 - otherwise, let $W_{other} = W u_i$, $w'_i = w_i u_i$. Here, u_i indicates the units of *item_i* in *opt*
 - ▶ replace min (W_{other}, w'_i) units of other items in *opt* with *item*_i.
 - ▶ after replacement, we should also obtain an optimal solution.

Give a dynamic-programming solution to the 0-1 knapsack problem that runs in O(nW) time, where n is the number of items and W is the maximum weight of items that the thief can put in his knapsack.

Answer.

Let dp[i, w] record the maximum value can be obtained by taking only items from 1 to *i* without exceeding the weight limit *w*.

$$dp[i, w] = \max \left(dp[i - 1, w], \max_{k < i} \left(dp[k, w - w_i] + p_i \right) \right)$$

背包问题九讲

背包问题九讲 2.0 beta1.2

崔添翼 (Tianyi Cui)*

 $2012-05-08^{\dagger}$

本文觀力、當自與輕九時, 从萬子、約高度如常之か。若明, 這個文質對常一世子200 若子年発用, Euro-SMuse 新作, 以 HTML 指式发布 到門上, 转载6.8, 有一定算和力, 2011年9月, 本系所文章編集件常用 BUAX 重新新任并全面前行, 您現在都得的是 本文就代目期作者所有, 用, PO N-NCAA 协议发布。

Contents

01 1	背包问题																
1.1	題目																
1.2	基本思路																
1.3	优化空间	明杂用	Ε														
1.4	\$77.56 (¥ 653)	8116	1.40														
1.5	一个常数	±0															
1.6	小结																
完全	背包问题																
2.1	題目																
2.2	基本思路																
2.3	一个简单?	有效的	优化	Ł.													
2.4	转化为 01	背包	问题	求	解												
2.5	O(VN) 8	1篇法															
2.6	小结																
\$1	背包问题																
3.1	翹目																
3.2	基本算法																
3.3	转化为 01	背句	问题														
					1.2												

[†]Build 20120508120900

	3.5	小结													9
4	混合 4.1 4.2 4.3 4.4	三种背包间 问题 01 背包与 再加上多) 小结)題 完全: [[背毛	背包	的著	哈									9 9 9 10
5	二雎 5.1 5.2 5.3 5.4 5.5	费用的背包 问题 算法 物品总个! 复整数域 小结	【回题 发的图] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1	问题										10 10 10 10 11 11
6	分组 6.1 6.2 6.3	的背包问题 问题 算法 小结													11 11 11 11
7	有依 7.1 7.2	赖的背包间 简化的问题 算法	HA A												12 12 12
	7.4	较一般的(小结	躙												$\frac{12}{13}$
8	7.3 7.4 送化 8.1 8.2 8.3 8.4	較一般的(小结 , , , , , , , , , , , , , , , , , ,	利題	と物	5										12 13 13 13 13 14 14

https://raw.githubusercontent.com/tianyicui/pack/master/V2.pdf

3-2 Greedy

2020年9月24日 7/22

TC 16.3-2

Prove that a binary tree that is not full cannot correspond to an optimal prefix code.

Full Binary Tree: every nonleaf node has two children

证明.

Replace the node (that has only one child) with its subtree would yield a better solution. $\hfill \Box$

TC 16.3-5

Prove that if we order the characters in an alphabet so that their frequencies are monotonically decreasing, then there exists an optimal code whose codeword lengths are monotonically increasing.

Hint

Monotonicity

A function f(n) is *monotonically increasing* if $m \le n$ implies $f(m) \le f(n)$. Similarly, it is *monotonically decreasing* if $m \le n$ implies $f(m) \ge f(n)$. A function f(n) is *strictly increasing* if m < n implies f(m) < f(n) and *strictly decreasing* if m < n implies f(m) > f(n).

•
$$c_1.f \ge c_2.f \ge \cdots \ge c_n.f$$

- ▶ T: an optimal code for c_1, c_2, \cdots, c_n
- ► Try to show $\forall i < j, d_T(c_i).l \le d_T(c_j).l$
 - Can be easily proved by contradiction.

TC 16.3-8

Suppose that a data file contains a sequence of 8-bit characters such that all 256 characters are about **equally common**: the maximum character frequency is less than twice the minimum character frequency. Prove that Huffman coding in this case is no more efficient than using an ordinary 8-bit fixed-length code.

证明.

- $\forall i \forall j \forall k (c_i.freq + c_j.freq > c_k.freq)$
- ▶ So, there must be 128 internal nodes with 2 leaves
- $\blacktriangleright \quad \forall i \forall j \forall k \forall l(1/2 < \frac{c_i.freq + c_j.freq}{c_k.freq + c_l.freq} < 2)$
- So, the maximum combined character frequency is less than twice the minimum combined character frequency.
- ▶ Recursively, we could show that the tree is a **perfect** binary tree.

TC Problem 16-1 (Coin changing)

Consider the problem of making change for n cents using the fewest number of coins. Assume that each coin's value is an integer.

Question-A

Describe a greedy algorithm to make change consisting of (\mathbf{Q}) uarters, (\mathbf{D}) imes, (\mathbf{N}) ickels, and (\mathbf{P}) ennies. Prove that your algorithm yields an optimal solution.

The Algorithm

- Always give the highest denomination coin that you can without going over.
- ▶ Then, repeat this process until the amount of remaining change drops to 0.

Optimal substructure

Naive

Greedy-choice property

An optimal solution to make change for n cents includes one coin of value c, where c is the largest coin value such that $c \leq n$.

Proof of greedy-choice.

- Case 1: If this optimal solution includes a coin of value c, then we are done.
- Case 2 Otherwise, this optimal solution does not include a coin of value c. We have four cases:
 - (1) n < 5: A solution consists only of **P**s. (should be **Case 1**)
 - (2) $5 \le n < 10$: Replace five **P**s by one **N**.
 - (3) $10 \le n < 25$: Some subset of the Ns and Ps in this solution adds up
 - to 10 cents, and so we can replace these Ns and Ps by a D.
 - (4) $25 \le n$:
 - (a) $\#dime \geq 3: 3 \dim s \rightarrow 1 \operatorname{quarter} + 1 \operatorname{nickel}$
 - (b) $\#\dim \leq 2$: some subset of the dimes, nickels, and pennies adds up to 25 cents, and so we can replace these coins by one **Q**.

Question-B

Suppose that the available coins are in the denominations that are powers of c, i.e., the denominations are c^0, c^1, \dots, c^k for some integers c > 1 and $k \ge 1$. Show that the greedy algorithm always yields an optimal solution.

Optimal substructure

► Naive!

Greedy-choice property

There is an optimal solution to make change for n cents includes one coin of value q, where $q = c^k$ is the largest coin value such that $q \leq n$.

引理(1)

For any coin set T, if
$$c^k \leq \sum_{x \in T} = n < c^{k+1}$$
 and $\forall x \in T, x < c^k$, then,
there is a subset S of T s.t. $\sum_{x \in S} = c^k$.

Proof of Lemma1.

Induction on k

B:
$$k = 0$$
, then $T = \frac{\{1, \dots, 1\}}{n}$, which is obviously true

• **H**: for all
$$k < i$$
 the lemma holds

▶ I:
$$k = i + 1$$

• partition T into c subsets T_1, \dots, T_c s.t. $c^i \leq \sum_{x \in T_j} < c^{i+1}$.

▶ By **H**, for each T_j we could find a subset S_j s.t. $\sum_{x \in S_j} = c^i$.

• We find a subset S of T s.t.
$$S = \bigcup_{j=1,...,c} S_j$$
 and $\sum_{x \in S} = c^{i+1}$

17/22

Greedy-choice property

There is an optimal solution to make change for n cents includes one coin of value q, where $q = c^k$ is the largest coin value such that $q \leq n$.

Proof by contradiction.

- Assume there is a n and all optimal solutions to make change for n cents do not include any coin of value q, where $q = c^k$ is the largest coin value such that $q \leq n$.
- We could find a subset S of T s.t. $\sum_{x \in S} = c^k$. (by Lemma(1))
- ▶ Replace S with a coin c^k would yield a better solution. (Conflict!)

Another proof

引理(2)

Given an optimal solution (x_0, x_1, \dots, x_k) where x_i indicates the number of coins of denomination c^i . Then we must have $x_i < c$ for every i < k.

Proof of Lemma2.

- Suppose that we had some $x_i \ge c$, then, we could decrease x_i by c and increase x_{i+1} by 1.
- ▶ This collection of coins has the same value and has *c*1 fewer coins, so the original solution must of been non-optimal.

Greedy-choice property

There is an optimal solution to make change for n cents includes one coin of value q, where $q = c^k$ is the largest coin value such that $q \leq n$.

Proof by contradiction.

Assume there is a n and all optimal solutions to make change for n cents do not include any coin of value q, where $q = c^k$ is the largest coin value such that $q \leq n$.

► However, as $x_i < c$ for every i < k (by Lemma2), $\sum_{0 \le i < k} x_i c^i < c^k \le n$, Conflict!

Give a set of coin denominations for which the greedy algorithm does not yield an optimal solution. Your set should include a penny so that there is a solution for every value of n.

Answer

Try to make change for 8 cents with coins in $\{1, 4, 5\}$

Give an O(nk)-time algorithm that makes change for any set of k different coin denominations, assuming that one of the coins is a penny.

Answer

▶ c[i]: the minimum number of coins needed to make change for i cents.

$$c[i] = \min_{1 \le j \le k} (c[i - v_j]) + 1$$

Thank You!