

• 贪心算法

课程研讨

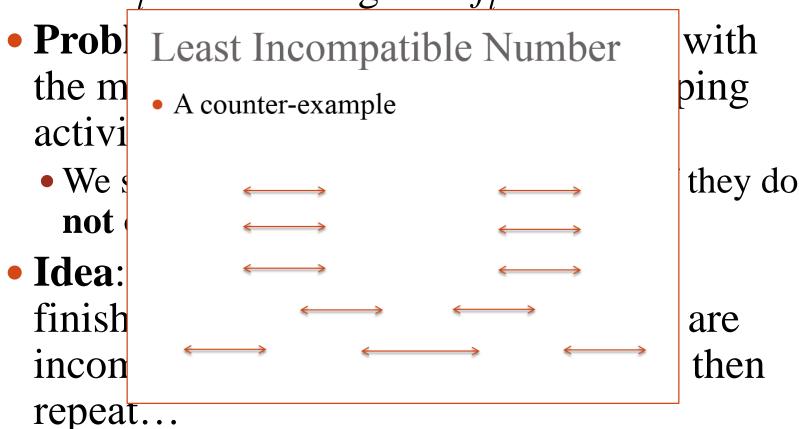
• TC第16.1-16.3节、第17章

- 你怎么理解greedy algorithms的两个重要性质?
 - greedy-choice property
 - optimal substructure
- 你能不能结合activity-selection problem解释为什么这两个性质缺一不可?
- 为什么greedy algorithms比dynamic programming快?

i	1	2	3	4	5	6	7	8	9	10 2 14	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

Scheduling Activities

• **Instance**: a set of n activities, each with start time s_i and finishing time f_i



A Scheduling Algorithm

- Sort activities by finish time.
- Choose first activity.
- Repeatedly choose the next activity that is compatible with all previously chosen ones.

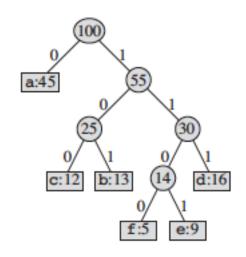
- Running time: $\Theta(n \log n)$ time to sort, $\Theta(n)$ time for the rest.
- How do we prove this is correct?

- 你怎么理解greedy algorithms的两个重要性质?
 - greedy-choice property
 - optimal substructure
- 你能不能结合activity-selection problem解释为什么这两个性质缺一不可?
- 为什么greedy algorithms比dynamic programming快?
 - making the first choice before solving any subproblems
 - making one greedy choice after another reducing each given problem instance to a smaller one

i	1	2	3	4	5	6	7	8	9	10 2 14	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

- 关于Huffman codes的greedy algorithm
 - greedy choice是什么?
 - greedy-choice property是什么?
 - optimal substructure是什么?

	a	b	c	d	e	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100



Describe an efficient algorithm that, given a set $\{x_1, x_2, \dots, x_n\}$ of points on the real line, determines the smallest set of unit-length closed intervals that contains all of the given points. Argue that your algorithm is correct.

Describe an efficient algorithm that, given a set $\{x_1, x_2, \dots, x_n\}$ of points on the real line, determines the smallest set of unit-length closed intervals that contains all of the given points. Argue that your algorithm is correct.

Sol: First we sort the set of n points $\{x_1, x_2, ..., x_n\}$ to get the set $Y = \{y_1, y_2, ..., y_n\}$ such that $y_1 \leq y_2 \leq ... \leq y_n$. Next, we do a linear scan on $\{y_1, y_2, ..., y_n\}$ started from y_1 . Everytime while encountering y_i , for some $i \in \{1, ..., n\}$, we put the closed interval $[y_i, y_i + 1]$ in our optimal solution set S, and remove all the points in Y covered by $[y_i, y_i + 1]$. Repeat the above procedure, finally output S while Y becomes empty. We next show that S is an optimal solution.

We claim that there is an optimal solution which contains the unit-length interval $[y_1, y_1 + 1]$. Suppose that there exists an optimal solution S^* such that y_1 is covered by $[x', x'+1] \in S^*$ where x' < 1. Since y_1 is the leftmost element of the given set, there is no other point lying in $[x', y_1)$. Therefore, if we replace [x', x'+1] in S^* by $[y_1, y_1+1]$, we will get another optimal solution. This proves the claim and thus explains the greedy choice property. Therefore, by solving the remaining subproblem after removing all the points lying in $[y_1, y_1 + 1]$, that is, to find an optimal set of intervals, denoted as S', which cover the points to the right of $y_1 + 1$, we will get an optimal solution to the original problem by taking union of $[y_1, y_1 + 1]$ and S'.

Scheduling to Minimize Lateness

- **Instance**: a set of n activities, each with start time s_i , deadline d_i and a duration t_i .
- **Problem**: we plan to satisfy each request, but we are allowed to let certain requests run late, and the optimization goal is to schedule all requests, using non-overlapping intervals, so as to minimize the ma Greedy Strategies
 - We say a request i is and the lateness of s $l_i = f(i) d_i$.
 - The goal: minimize

- We say a request i is Choosing the smallest t_i
 - and the lateness of s Choosing the smallest (d_i-t_i)
 - Choosing the smallest d_i

• 建议阅读打星号的16.4节

• amortized analysis和average-case analysis 有什么异同?

- amortized analysis和average-case analysis有什么异同?
 - per operation vs. per algorithm
 - worst-case vs. average-case

- 这些问题的分析难在哪儿? amortized analysis能带来什么好处?
 - stack operations

PUSH(S, x) pushes object x onto stack S.

POP(S) pops the top of stack S and returns the popped object. Calling POP on an empty stack generates an error.

```
MULTIPOP(S, k)

1 while not STACK-EMPTY(S) and k > 0

2 POP(S)

3 k = k - 1
```

• incrementing a binary counter

- aggregate analysis
 - 该方法的基本思路是什么?
 - 如何用来解决这两个问题?
 - 如果增加一个DECREMENT, 结果又如何?
 - 它在使用上有什么局限吗?

```
PUSH(S, x) pushes object x onto stack S.
```

POP(S) pops the top of stack S and returns the popped object. Calling POP on an empty stack generates an error.

MULTIPOP(S,k)

```
1 while not STACK-EMPTY (S) and k > 0
2 POP(S)
```

```
3 	 k = k - 1
```

- accounting method
 - 该方法的基本思路是什么? 右侧这个式子是什么含义? ∑¯ç; ≥ ∑¯ç;
 - 如何用来解决这两个问题? 三 上述式子是如何保证成立的?
 - 如果增加一个RESET, 结果又如何? (Keep a pointer to the high-order 1.)

PUSH(S, x) pushes object x onto stack S.

POP(S) pops the top of stack S and returns the popped object. Calling POP on an empty stack generates an error.

MULTIPOP(S,k)

- 1 while not STACK-EMPTY (S) and k > 0
- 2 Pop(S)
- 3 k = k 1

Counter value	机多数多数多数多数	Total cost
0	0 0 0 0 0 0 0	0
1	00000001	1
2	00000010	3
3	00000011	4
4	0 0 0 0 0 1 0 0	7
5	0 0 0 0 0 1 0 1	8
6	0 0 0 0 0 1 1 0	10
7	0 0 0 0 0 1 1 1	11
8	0 0 0 0 1 0 0	15
9	00001001	16
10	0 0 0 0 1 0 1 0	18
11	0 0 0 0 1 0 1 1	19
12	0 0 0 0 1 1 0 0	22
13	0 0 0 0 1 1 0 1	23
14	0 0 0 0 1 1 1 0	25
15	0 0 0 0 1 1 1 1	26
16	00010000	31

potential method

- 该方法的基本思路是什么? 右侧这组式子是什么含义?
- 如何用来解决这两个问题? 以及一个新问题:

 $\sum_{i=1}^{n} \widehat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}))$ $= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0}).$ $\Phi(D_{n}) \geq \Phi(D_{0}).$

 $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}).$

Implement a queue with two stacks.

The amortized cost of ENQ and DEQ is O(1).

```
PUSH(S, x) pushes object x onto stack S.
```

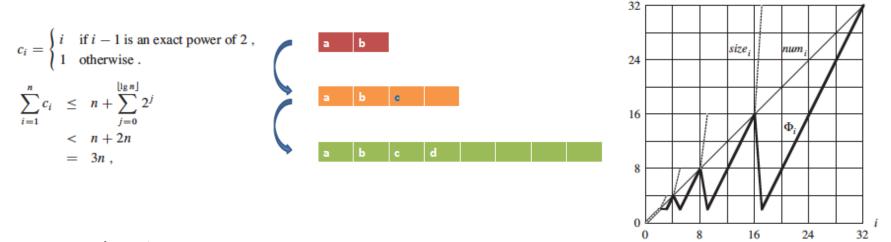
POP(S) pops the top of stack S and returns the popped object. Calling POP on an empty stack generates an error.

MULTIPOP(S,k)

- 1 while not STACK-EMPTY (S) and k > 0
- 2 Pop(S)
- 3 k = k 1

问题3: dynamic tables

• 对于table expansion, 你能解释aggregate 和accounting的分析过程吗?



• 对于potential function $\Phi(T) = 2 \cdot T.num - T.size$ 你能结合accounting来解释它的走势吗?

Graph Operations

- Consider the following operations on a set of nodes in a graph:
 - Connect(A, B): add an edge from node A to node B in the graph (if there already exists such an edge, do nothing);
 - Disconnect(A, B): if there are paths from A to B, remove all edges in the paths(if there is no path, do nothing);
- Assume the cost of adding an edge is 1, removing an edge is 2, and the cost of finding a path in the graph is omitted. There is no edge in the graph at the beginning. Consider a sequence of *n* operations on the graph, apply amortized analysis on the cost of Connect and Disconnect operations in the worst case.

Implement a Queue with two Stacks

- Describe how to implement a queue with two stacks which are implemented by arrays. Analyze the complexity of *Enqueue* and *Dequeue* with amortized analysis.
 - Enqueue
 - 将入队元素压入栈A。
 - Dequeue
 - 若枝B为空,将栈依次将栈A中元素出栈,然后压入栈B,直至栈A为空(或剩余一个元素),将栈B顶端元素出栈(或将栈A剩余元素出栈)。
 - 若栈B不为空,直接将栈B顶端元素出栈。