'U-j—r-/i'

PRAZA 1]
e TC3#16.1-16.371. ZF17=

|BJRR1: greedy algorithms

o RE LR fEgreedy algorithms) - B 24 i 2
e greedy-choice property
e optimal substructure

o YREEANRESE Hractivity-selection problemfERE A 4 iX
Ao R — AN AT 2

o A4 greedy algorithmsttdynamic programming s ?

(-,

Scheduling Activities

e Instance: a set of n activities, each with start
time s; and finishing time f.

e Prob
the m
activi
o We ¢

not

e |dea:
finish
Incon

Least Incompatible Number

e A counter-example

with
0INg

they do

al€

repeat...

then

A Scheduling Algorithm

e Sort activities by finish time.
e Choose first activity.

» Repeatedly choose the next activity that Is
compatible with all previously chosen ones.

e Running time: ©(n log n) time to sort, &(n)
time for the rest.

e How do we prove this Is correct?

[B)&R1: greedy algorithms

o VRIEAFEfEgreedy algorithms) g B 24 i 2
e greedy-choice property
e optimal substructure
o UREEASBELS Aractivity-selection problemfiEFe N4 X 7
M PTER—ANA] ?
o Nt greedy algorithms b dynamic programming st ?
e making the first choice before solving any subproblems

e making one greedy choice after another
reducing each given problem instance to a smaller one

fa =] —
Lh | bd

Ti

[B]8%1: greedy algorithms ()

o < THuffman codesfgreedy algorithm
e greedy choiceseft4 ?
o greedy-choice property 21t4 ?
o optimal substructure;&/t4 ?

a b c d e £
Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 0110 011 100 101

Yariable-length codeword 0 101 100 111 1101 100dh

|aJgK1: greedy algorithms &)

Describe an efficient algorithm that, given a set {x, X2,...,X,} of points on the
real line, determines the smallest set of unit-length closed intervals that contains
all of the given points. Argue that your algorithm is comrect.

BJ&R1: greedy algorithms &)

Describe an efficient algorithm that, given a set {x, X2,...,X,} of points on the
real line, determines the smallest set of unit-length closed intervals that contains
all of the given points. Argue that your algorithm is comrect.

Sol: First we sort the set of n points {zy,x9,....7,} to get the set Y = {yi,v0,....yn}
such that y; < yo < ... < y,. Next, we do a linear scan on {y;.va.y,} started from
y1. Everytime while encountering y;, for some i € {1,...,n}, we put the closed interval
[y;,y; + 1] In our optimal solution set S, and remove all the points in Y covered by
[ys,yi + 1]. Repeat the above procedure, finally output S while ¥ becomes empty. We
next show that S 1s an optimal solution.

We claim that there is an optimal solution which contains the unit-length interval [y, y; +
1]. Suppose that there exists an optimal solution S* such that y; 1s covered by [z, 2'+1] €
S* where ' < 1. Since y; is the leftmost element of the given set, there is no other point
lying in [z', y1). Therefore, if we replace [z’ 2’ + 1] in 5* by [yq, y1 + 1], we will get another
optimal solution. This proves the claim and thus explains the greedy choice property.
Therefore, by solving the remaining subproblem after removing all the points lying in
ly1,y1 + 1], that is, to find an optimal set of intervals, denoted as S’, which cover the
points to the right of y1 + 1, we will get an optimal solution to the original problem by

taking union of [y1,y1 + 1] and 5.

Scheduling to Minimize Lateness

e Instance: a set of n activities, each with start
time s;, deadline d; and a duration t;.

* Problem: we plan to satisfy each request, but
we are allowed to let certain requests run late,

and the optimization goal is to schedule all
-nverlannina intervals |n as

requests, using non

to minimize the ma

e \We say a request I IS
and the lateness of s
|.=f(i)-d..

e The goal: minimize

Greedy Strategies

noosing t
noosing t

ne smallest t;
ne smallest (d.-t,)

noosing t

ne smallest d.

[B]8%1: greedy algorithms ()

o HWHTLIT E S H16.47

[B)RR2: amortized analysis

» amortized analysisflaverage-case analysis

B4 762

[B)RR2: amortized analysis

» amortized analysisflaverage-case analysis
A2 Rl
e per operation vs. per algorithm
® WOrst-case vs. average-Ccasc

[BJRR2: amortized analysis ()

o X LL[r] @ i) o A EAERR)L ?

amortized analysisge iy A4 iF-4b 2

e stack operations

PUsH(S, x) pushes object x onto stack 5.

Pop(5) pops the top of stack 5 and retums the popped object. Calling POP on an
empty stack generates an ermor,

MuLTPoP(S. k)

I while mot STACK-EMPTY (S) and & = 0
2 Pori(X)
3 kEk=k-1

e Incrementing a binary counter

Commter . = s 5 5 5, 5

- = B
EuLH-F-HMl—I:II:Iﬂ-uﬂ'uLﬂ-F-WMl—I:IH

=R=1=R=R=R=1=R=R=1=R=R=R=1=R=R=-R=DR A"
cooooDoDoOoooDDOoODO oD T
coDoODoOoODOoOoDOoDoDDDDD W
=Booooooooooooooo T
DE==e==e===Dooooooo ¥
o= =BoocomE===Bococo T
=1 ER-1=1 2 -I=1 2-1=1.C -1 -]
D=D=D=D=D=0=D0=0=0 ¥

(-

[BJRR2: amortized analysis ()

e aggregate analysis
o LTI A BB A

o U114A] %%%Lﬁﬁﬂﬂ?
NS —/"DECREMENT, &5 % W fnfa]?

o BIEMEH EHEH A SRR ?

Coomter ., - ity

valoe
0
1
2
3
4
5
PUSH(S, x) pushes object x onto stack 5. P
PoP(S) pops the top of stack § and retams the popped object. Calling POP on an ;
empty stack generates an ermor. g
10
MuULTIPFGP{ 5. E) 11
| while not STACK-EMPTY (5) and k > 0 ﬁ
2 Por(&) 14
3 kE=k-1 15

L7

coDoODoDOoODOoOOoDOoDoDDoDDD ¥
coooooooOoooDD oD o oD T
=R=1=-R=R=0-1-R=R=1=-R-R=R=1=-R=R=R=) 1"._1'.-__
=Boocoocooocooococococoooo T
D mm===Booooooe %
DD o====Dococo T
De=Pol==Eo==Bo= = T
De=D=O=D=0=0=o=o=o T

(-

[BJRR2: amortized analysis ()

e accounting method
o \Z T FRA UE%EHA ?
AR ATt A S0 23
o LA R ﬁﬁ#ﬁ%kﬁﬁ/l\ltﬂ @j‘?

Lx_fi?mﬁﬂ fA] LRAIE Al AL) 2
R n—NRESET, 4558 X ey ?

ll

l-l'l'l:l'l:l B A e s, M A A Y

- - "'-h"_.,\?_l-":.,\i‘.

(Keep a pointer to the high-order 1.) == PEPEREEY

0 0000000

1 000000l

2 00000010

3 000 o0o/@l

4 00000l o0

5 oo0o0oo 1ol

PUSH(S, x) pushes object x onto stack 5. P oooool 10
PoP(S) pops the top of stack § and retams the popped object. Calling POP on an ; gggg'}aa:}
cmFt}'s.tE:kgcmmtma.nm. g ooool ol

10 oo0o0ololo

MuLTIPOP(S, k) 11 0oo001@r
12 o000l 1 o

1 while not STACK-EMPTY(S) and & > 0 13 oooo1 1o
Por(&) 14 ooool 1 1@

3 E=k—1 15 00 0rrr
16 00010000

o

[BJRR2: amortized analysis ()

e potential method
o LITIAMEAR BB A7

E@TJ‘?‘Q EE%IE/H_‘ X? ir E[c+cmm ®(D,_,))

o ANAA] PR MR OLX P ST R ?

c + P — DDy, .

A
= Z.:', + B0 —B(D,) .

Ux&_‘/\%ﬁ ltﬂ@ o0, > (D)

Implement a queue with two stacks.

The amortized cost of ENQ and DEQ is O(1).

PUSH(S, x) pushes object x onto stack 5.

PoP(S) pops the top of stack § and retams the popped object. Calling POP on an
empty stack generates an ermor.

MuLTIPOP(S, k)

1 while not STACK-EMPTY(S) and & > 0
2 Por(§)
3 k=k-1

Coomter ., - oD A

T

valoe

coDoODoDOoODOoOOoDOoDoDDoDDD ¥
coooooooOoooDD oD o oD T
=R=1=-R=R=0-1-R=R=1=-R-R=R=1=-R=R=R=) 1"._1'.-__
D mm===Booooooe %
DD o====Dococo T
De=Pol==Eo==Bo= = T
De=D=O=D=0=0=o=o=o T

Ll = E=R =1 = == = = e e e o

o

|BJgR3: dynamic tables
o % Ttable expansion, YRAEf#FEaggregate
Alaccounting 1443 Hrid A2 1 2
=l 0 L memammert (- ;
grf = n+§2f C e .
® Xj‘::pOtentlal funCtIOn (r)=12- Tﬂumu Tﬂ: ;)
VR BE 45 Eraccounting S AR 11 & A 2

i
32

Graph Operations

e Consider the following operations on a set of nodes
In a graph:
e Connect(A, B): add an edge from node A to node B in the
graph (if there already exists such an edge, do nothing);

e Disconnect(A, B): if there are paths from A to B, remove
all edges in the paths(if there is no path, do nothing);

e Assume the cost of adding an edge Is 1, removing an
edge Is 2, and the cost of finding a path in the graph
IS omitted. There Is no edge In the graph at the
beginning. Consider a sequence of n operations on
the graph, apply amortized analysis on the cost of
Connect and Disconnect operations in the worst case.

Implement a Queue with two Stacks

e Describe how to implement a queue with
two stacks which are implemented by arrays.
Analyze the complexity of Enqueue and
Degueue with amortized analysis.

e Enqueue
BB IEERIENRA.

e Dequeue

ARBANZE, RIEAKICRRAT TR R, REEAKB, H
EHRANT (BRIR—PICHR) , KMEBIUmRICR i (Hok
AR TTR AR .

AARBANNES, EHCR B TR k.

