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Scheduling Activities

e Instance: a set of n activities, each with start
time s; and finishing time f.
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A Scheduling Algorithm

e Sort activities by finish time.
e Choose first activity.

» Repeatedly choose the next activity that Is
compatible with all previously chosen ones.

e Running time: ©(n log n) time to sort, &(n)
time for the rest.

e How do we prove this Is correct?
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e greedy-choice property
e optimal substructure
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e making the first choice before solving any subproblems

e making one greedy choice after another
reducing each given problem instance to a smaller one
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o < THuffman codesfgreedy algorithm
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o greedy-choice property 21t4 ?
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a b c d e £
Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 0110 011 100 101

Yariable-length codeword 0 101 100 111 1101 100dh
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Describe an efficient algorithm that, given a set {x, X2,...,X,} of points on the
real line, determines the smallest set of unit-length closed intervals that contains
all of the given points. Argue that your algorithm is comrect.




BJ&R1: greedy algorithms &)

Describe an efficient algorithm that, given a set {x, X2,...,X,} of points on the
real line, determines the smallest set of unit-length closed intervals that contains
all of the given points. Argue that your algorithm is comrect.

Sol: First we sort the set of n points {zy,x9,....7,} to get the set Y = {yi,v0,....yn}
such that y; < yo < ... < y,. Next, we do a linear scan on {y;.va. ....y,} started from
y1. Everytime while encountering y;, for some i € {1,...,n}, we put the closed interval
[y;,y; + 1] In our optimal solution set S, and remove all the points in Y covered by
[ys,yi + 1]. Repeat the above procedure, finally output S while ¥ becomes empty. We
next show that S 1s an optimal solution.

We claim that there is an optimal solution which contains the unit-length interval [y, y; +
1]. Suppose that there exists an optimal solution S* such that y; 1s covered by [z, 2'+1] €
S* where ' < 1. Since y; is the leftmost element of the given set, there is no other point
lying in [z', y1). Therefore, if we replace [z’ 2’ + 1] in 5* by [yq, y1 + 1], we will get another
optimal solution. This proves the claim and thus explains the greedy choice property.
Therefore, by solving the remaining subproblem after removing all the points lying in
ly1,y1 + 1], that is, to find an optimal set of intervals, denoted as S’, which cover the
points to the right of y1 + 1, we will get an optimal solution to the original problem by

taking union of [y1,y1 + 1] and 5.




Scheduling to Minimize Lateness

e Instance: a set of n activities, each with start
time s;, deadline d; and a duration t;.

* Problem: we plan to satisfy each request, but
we are allowed to let certain requests run late,

and the optimization goal is to schedule all
-nverlannina intervals |n as

requests, using non

to minimize the ma
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e The goal: minimize

Greedy Strategies

noosing t
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ne smallest t;
ne smallest (d.-t,)

noosing t

ne smallest d.
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» amortized analysisflaverage-case analysis
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[B)RR2: amortized analysis

» amortized analysisflaverage-case analysis
A2 Rl
e per operation vs. per algorithm
® WOrst-case vs. average-Ccasc
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amortized analysisge iy A4 iF-4b 2

e stack operations

PUsH(S, x) pushes object x onto stack 5.

Pop(5) pops the top of stack 5 and retums the popped object. Calling POP on an
empty stack generates an ermor,

MuLTPoP(S. k)

I  while mot STACK-EMPTY (S ) and & = 0
2 Pori(X)
3 kEk=k-1

e Incrementing a binary counter

Commter . = s 5 5 5, 5
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e aggregate analysis
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(Keep a pointer to the high-order 1.) == PEPEREEY
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PUSH(S, x) pushes object x onto stack 5. P oooool 10
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e potential method
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Implement a queue with two stacks.

The amortized cost of ENQ and DEQ is O(1).

PUSH(S, x) pushes object x onto stack 5.

PoP(S) pops the top of stack § and retams the popped object. Calling POP on an
empty stack generates an ermor.

MuLTIPOP(S, k)

1 while not STACK-EMPTY(S) and & > 0
2 Por(§)
3 k=k-1
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Graph Operations

e Consider the following operations on a set of nodes
In a graph:
e Connect(A, B): add an edge from node A to node B in the
graph (if there already exists such an edge, do nothing);

e Disconnect(A, B): if there are paths from A to B, remove
all edges in the paths(if there is no path, do nothing);

e Assume the cost of adding an edge Is 1, removing an
edge Is 2, and the cost of finding a path in the graph
IS omitted. There Is no edge In the graph at the
beginning. Consider a sequence of n operations on
the graph, apply amortized analysis on the cost of
Connect and Disconnect operations in the worst case.




Implement a Queue with two Stacks

e Describe how to implement a queue with
two stacks which are implemented by arrays.
Analyze the complexity of Enqueue and
Degueue with amortized analysis.

e Enqueue
BB IEERIENRA.

e Dequeue
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