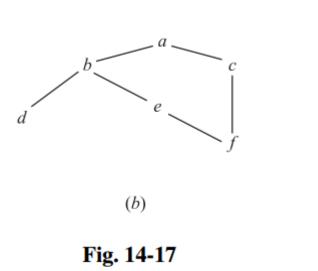
作业1-12

SM第14章问题32,44,46,58,62,66,70,75

14.32. Let $B = \{a, b, c, d, e, f\}$ be ordered as in Fig. 14-17(*b*).

- (a) Find all minimal and maximal elements of B.
- (b) Does *B* have a first or last element?
- (c) List two and find the number of consistent enumerations of B into the set $\{1, 2, 3, 4, 5, 6\}$.

(c)11种



14.44. Suppose the following are three consistent enumerations of an ordered set $A = \{a, b, c, d\}$:

 $[(a, 1), (b, 2), (c, 3), (d, 4)], \quad [(a, 1), (b, 3), (c, 2), (d, 4)], \quad [(a, 1), (b, 4), (c, 2), (d, 3)]$

Assuming the Hasse diagram D of A is connected, draw D.

14.58. Show that the isomorphism relation $A \cong B$ for ordered sets is an equivalence relation, that is:

(a) $A \cong A$ for any ordered set A. (b) If $A \cong B$, then $B \cong A$. (c) If $A \cong B$ and $B \cong C$, then $A \cong C$.

• Key point:



Suppose X and Y are partially ordered sets. A one-to-one (injective) function $f: X \to Y$ is called a *similarity mapping* from X into Y if f preserves the order relation, that is, if the following two conditions hold for any pair a and a' in X:

(1) If $a \preceq a'$ then $f(a) \preceq f(a')$.

(2) If $a \parallel a'$ (noncomparable), then $f(a) \parallel f(a')$.

14.62. Suppose A and B are well-ordered isomorphic sets. Show that there is only one similarity mapping $f: A \to B$.

• Proof-1

∴ *A*, *B* are well – ordered

case(1): A, B are finite

A can be denoted as:{ $a_0, a_1, ..., a_n$ }, where $|A| = n, a_i \leq a_j$ for $0 \leq i \leq j \leq n$

B can be denoted as:{ $b_0, b_1, ..., b_n$ }, where $|B| = n, b_i \leq b_j$ for $0 \leq i \leq j \leq n$ case(2): *A*, *B* are infinite

A can be denoted as:{ $a_0, a_1, ..., a_k, ...$ }, where $a_i \leq a_j$ for $0 \leq i \leq j$

B can be denoted as:{ $b_0, b_1, ..., b_k, ...$ }, where $b_i \leq b_j$ for $0 \leq i \leq j$ For both cases:

••• A,B are isomorphic

 \therefore there is a bijective similarity mapping $f: A \rightarrow B$:

"For each $a_i \in A$, $f(a_i) = b_i$ " by introduction on *i*. Base: *i*=0

it is easy to show that $f(a_0) = b_0$ H: for $i \le k, f(a_i) = b_i$ I: for i = k + 1, if $f(a_{k+1}) \ne b_{k+1}$, $\therefore f \text{ is } 1 - to - 1 \text{ and for } i \le k, f(a_i) = b_i$ $\therefore \exists b_j \in B, j > k + 1 \text{ s. t. } f(a_{k+1}) = b_j$ $\forall \therefore f \text{ is bijective, and for } i \le k, f(a_i) = b_i$ $\therefore f^{-1}(b_{k+1}) \in A \text{ and } a_{k+1} \le f^{-1}(b_{k+1})$ $\therefore f(a_{k+1}) = b_j \le f(f^{-1}(b_{k+1})) = b_{k+1}$, which is contractive to $b_{k+1} < b_j(as k + 1 < j)$ so, the assumption $f(a_{k+1}) \ne b_{k+1}$ is wrong! $f(a_{k+1}) = b_{k+1}$ (*) Every element $a \in S$, other than a last element, has an immediate successor. For, let M(a) denote the set of elements which strictly succeed a. Then the first element of M(a) is the immediate successor of a.

:: A, B are well – ordered

case(1): A, B are finite

A can be denoted as:{ $a_0, a_1, ..., a_n$ }, where $|A| = n, a_i \leq a_j$ for $0 \leq i \leq j \leq n$

B can be denoted as:{ $b_0, b_1, ..., b_n$ }, where $|B| = n, b_i \leq b_j$ for $0 \leq i \leq j \leq n$ case(2): *A*, *B* are infinite

A can be denoted as:{ $a_0, a_1, ..., a_k, ...$ }, where $a_i \leq a_j$ for $0 \leq i \leq j$

B can be denoted as:{ $b_0, b_1, ..., b_k, ...$ }, where $b_i \leq b_j$ for $0 \leq i \leq j$ For both cases:

••• A,B are isomorphic

 \therefore there is a bijective similarity mapping $f: A \rightarrow B$:

"For each $a_i \in A$, $f(a_i) = b_i$ " by introduction on *i*. Base: *i*=0

it is easy to show that $f(a_0) = b_0$ H: for $i \le k, f(a_i) = b_i$ I: for i = k + 1, let $f(a_{i+1}) = b_m (m \ge i + 1)$ according to the fact (*), a_{k+1} is the first element of $M(a_k)$, so is b_{k+1} $\because f$ is bijective, and for $i \le k, f(a_i) = b_i$ $\therefore f^{-1}(b_{k+1}) \in M(a_k)$ and $a_{k+1} \le f^{-1}(b_{k+1})$ $\therefore f(a_{k+1}) = b_m \le f(f^{-1}(b_{k+1})) = b_{k+1}$ $\square : b_{k+1} \le b_m(b_{k+1})$ is the first element of $M(b_k)$) **So,** $f(a_{k+1}) = b_{k+1}$ **14.62.** Suppose A and B are well-ordered isomorphic sets. Show that there is only one similarity mapping $f: A \to B$.

- Assume there are two different bijective similarity mapping $f: A \rightarrow B$, and $g: A \rightarrow B$
- As *f*, *g* are different, define $C = \{a | a \in A, f(a) \neq g(a)\}$. Obviously $C \neq \emptyset$
- $: C \subseteq A$ and A is well-ordered

 \therefore *C* is well-ordered, and let $c \in C$ be the first element of C;

- It is easy to show that for every $a' \in A$, $a' \prec c$, we have f(a') = g(a')
- Let f(c) = x, g(c) = y, x ≠ y, then x and y are comparable(why?), without losing generality, assume x ≤ y
 - As g is bijective, then $g^{-1}(x) \in A S_A(c)$, here $S_A(c) = \{p | p \in A, p \prec c\}$, i.e., $g^{-1}(x) \in \{p | p \in A, c \preccurlyeq p\}$
 - $\therefore g(c) \leq g(g^{-1}(x))$
 - $\therefore y \leq x$
 - $\therefore x = y, f(c) = g(c)$, contradicting to C's definition
- So, f and g should be the same.

- **14.66.** Consider the lattice *M* in Fig. 14-19(*b*).
 - (a) Find all join-irreducible elements.
 - (b) Find the atoms.
 - (c) Find complements of a and b, if they exist.
 - (d) Express each x in M as the join of irredundant join-irreducible elements.
 - (e) Is *M* distributive? Complemented?
- Does M contain a sub-lattice isomorphic to

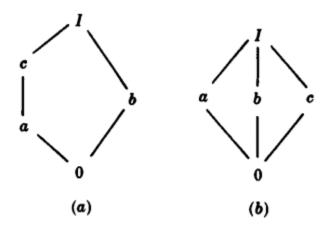
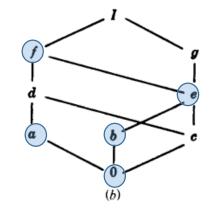


Fig. 14-7

Suppose M is a nonempty subset of a lattice L. We say M is a sub-lattice of L if M itself is a lattice (with respect to the operations of L).

We note that M is a sub-lattice of L if and only if M is closed under the operations of \wedge and \vee of L.



14.75. A lattice M is said to be *modular* if whenever $a \le c$ we have the law

$$a \lor (b \land c) = (a \lor b) \land c$$

- (a) Prove that every distributive lattice is modular.
- (b) Verify that the non-distributive lattice in Fig. 14-7(b) is modular; hence the converse of (a) is not true.
- (c) Show that the nondistributive lattice in Fig. 14-7(*a*) is non-modular. (In fact, one can prove that every non-modular lattice contains a sublattice isomorphic to Fig. 14-7(*a*).)

$$x \lor (y \land z) = (x \lor y) \land z$$

Discussion on different cases on possible values of x,y,z: Case 1: x = 0 $x \lor (y \land z) = \mathbf{0} \lor (y \land z) = y \land z$ $(x \lor y) \land z = (\mathbf{0} \lor y) \land z = y \land z$ Case 2: *x* ∈ {*a*, *b*, *c*} • Case 2.1: z = x $x \lor (y \land z) = x \lor (y \land x) = x$ $(x \lor y) \land z = (x \lor y) \land x = x$ Case 2.2: z = I٠ $x \lor (y \land z) = x \lor (y \land I) = x \lor y$ $(x \lor v) \land z = (x \lor v) \land I = x \lor v$ Case 3: x = I, z = I $x \lor (y \land z) = I \lor (y \land I) = I$ $(x \lor y) \land z = (I \lor y) \land I = I$

