作业1－12

SM第14章问题32，44，46，58，62，66，70，75
14.32. Let $B=\{a, b, c, d, e, f\}$ be ordered as in Fig. 14-17(b).
(a) Find all minimal and maximal elements of B.
(b) Does B have a first or last element?
(c) List two and find the number of consistent enumerations of B into the set $\{1,2,3,4,5,6\}$.

(c)11种

(b)

Fig. 14-17
14.44. Suppose the following are three consistent enumerations of an ordered set $A=\{a, b, c, d\}$:

$$
[(a, 1),(b, 2),(c, 3),(d, 4)], \quad[(a, 1),(b, 3),(c, 2),(d, 4)], \quad[(a, 1),(b, 4),(c, 2),(d, 3)]
$$

Assuming the Hasse diagram D of A is connected, draw D.

14.58. Show that the isomorphism relation $A \cong B$ for ordered sets is an equivalence relation, that is:
(a) $A \cong A$ for any ordered set A. (b) If $A \cong B$, then $B \cong A$. (c) If $A \cong B$ and $B \cong C$, then $A \cong C$.

- Key point:

Two ordered sets X and Y are said to be isomorphic or similar, written

$$
X \simeq Y
$$

if there exists a one-to-one correspondence (bijective mapping) $f: X \rightarrow Y$ which preserves the order relations, i.e., which is a similarity mapping.

Suppose X and Y are partially ordered sets. A one-to-one (injective) function $f: X \rightarrow Y$ is called a similarity mapping from X into Y if f preserves the order relation, that is, if the following two conditions hold for any pair a and a^{\prime} in X :
(1) If $a \precsim a^{\prime}$ then $f(a) \precsim f\left(a^{\prime}\right)$.
(2) If $a \| a^{\prime}$ (noncomparable), then $f(a) \| f\left(a^{\prime}\right)$.
14.62. Suppose A and B are well-ordered isomorphic sets. Show that there is only one similarity mapping $f: A \rightarrow B$.

- Proof-1
$\because A, B$ are well - ordered
case (1): A, B are finite
A can be denoted as: $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$, where $|A|=n, a_{i} \precsim a_{j}$ for $0 \leqq i \leqq j \leqq n$
B can be denoted as: $\left\{b_{0}, b_{1}, \ldots, b_{n}\right\}$, where $|B|=n, b_{i} \leqq b_{j}$ for $0 \leqq i \leqq j \leqq n$ case(2): A, B are infinite
A can be denoted as: $\left\{a_{0}, a_{1}, \ldots, a_{k}, \ldots\right\}$, where $a_{i} \leqq a_{j}$ for $0 \leqq i \leqq j$
B can be denoted as: $\left\{b_{0}, b_{1}, \ldots, b_{k}, \ldots\right\}$, where $b_{i} \leqq b_{j}$ for $0 \leqq i \leqq j$
For both cases:
$\because A, B$ are isomorphic
\therefore there is a bijective similarity mapping $f: A \rightarrow B$:
"For each $a_{i} \in A, f\left(a_{i}\right)=b_{i}$ " by introduction on i.
Base: $i=0$
it is easy to show that $f\left(a_{0}\right)=b_{0}$
H : for $i \leq k, f\left(a_{i}\right)=b_{i}$
I: for $i=k+1$, if $f\left(a_{k+1}\right) \neq b_{k+1}$,
$\because f$ is $1-$ to -1 and for $i \leq k, f\left(a_{i}\right)=b_{i}$
$\therefore \exists b_{j} \in B, j>k+1$ s.t. $f\left(a_{k+1}\right)=b_{j}$
又 $\because f$ is bijective, and for $i \leq k, f\left(a_{i}\right)=b_{i}$
$\therefore f^{-1}\left(b_{k+1}\right) \in A$ and $a_{k+1} \preccurlyeq f^{-1}\left(b_{k+1}\right)$
$\therefore f\left(a_{k+1}\right)=\boldsymbol{b}_{\boldsymbol{j}} \leqslant f\left(f^{-1}\left(b_{k+1}\right)\right)=\boldsymbol{b}_{\boldsymbol{k}+\boldsymbol{1}}$, which is contractive to $\boldsymbol{b}_{\boldsymbol{k}+\boldsymbol{1}} \prec \boldsymbol{b}_{\boldsymbol{j}}(\boldsymbol{a s} \boldsymbol{k}+\mathbf{1}<\boldsymbol{j})$
so, the assumption $f\left(a_{k+1}\right) \neq b_{k+1}$ is wrong! $f\left(a_{k+1}\right)=b_{k+1}$
(*) Every element $a \in S$, other than a last element, has an immediate successor. For, let $M(a)$ denote the set of elements which strictly succeed a. Then the first element of $M(a)$ is the immediate successor of a.
$\because A, B$ are well - ordered
case (1): A, B are finite
A can be denoted as: $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$, where $|A|=n, a_{i} \leqq a_{j}$ for $0 \leqq i \leqq j \leqq n$
B can be denoted as: $\left\{b_{0}, b_{1}, \ldots, b_{n}\right\}$, where $|B|=n, b_{i} \leqq b_{j}$ for $0 \leqq i \leqq j \leqq n$ case (2): A, B are infinite
A can be denoted as: $\left\{a_{0}, a_{1}, \ldots, a_{k}, \ldots\right\}$, where $a_{i} \leqq a_{j}$ for $0 \leqq i \leqq j$
B can be denoted as: $\left\{b_{0}, b_{1}, \ldots, b_{k}, \ldots\right\}$, where $b_{i} \leqq b_{j}$ for $0 \leqq i \leqq j$
For both cases:
$\because A, B$ are isomorphic
\therefore there is a bijective similarity mapping $f: A \rightarrow B$:
"For each $a_{i} \in A, f\left(a_{i}\right)=b_{i}$ " by introduction on i.
Base: $i=0$
it is easy to show that $f\left(a_{0}\right)=b_{0}$
H : for $i \leq k, f\left(a_{i}\right)=b_{i}$
I: for $i=k+1$, let $f\left(a_{i+1}\right)=b_{\mathrm{m}}(m \geq i+1)$
according to the fact $\left(^{*}\right), a_{k+1}$ is the first element of $M\left(a_{k}\right)$, so is b_{k+1}
$\because f$ is bijective, and for $i \leq k, f\left(a_{i}\right)=b_{i}$
$\therefore f^{-1}\left(b_{k+1}\right) \in M\left(a_{k}\right)$ and $a_{k+1} \leqslant f^{-1}\left(b_{k+1}\right)$
$\therefore f\left(a_{k+1}\right)=\boldsymbol{b}_{\boldsymbol{m}} \preccurlyeq f\left(f^{-1}\left(b_{k+1}\right)\right)=\boldsymbol{b}_{\boldsymbol{k}+\boldsymbol{1}}$
又 $\because \boldsymbol{b}_{\boldsymbol{k}+\boldsymbol{1}} \leqslant \boldsymbol{b}_{\boldsymbol{m}}\left(b_{k+1}\right.$ is the first element of $M\left(b_{k}\right)$)
So, $f\left(a_{k+1}\right)=b_{k+1}$
14.62. Suppose A and B are well-ordered isomorphic sets. Show that there is only one similarity mapping $f: A \rightarrow B$.
- Assume there are two different bijective similarity mapping $f: A \rightarrow$ B, and $g: A \rightarrow B$
- As f, g are different, define $C=\{a \mid a \in A, f(a) \neq g(a)\}$. Obviously,$C \neq \emptyset$
- $\because C \subseteq A$ and A is well-ordered
$\therefore C$ is well-ordered, and let $c \in \mathrm{C}$ be the first element of C ;
- It is easy to show that for every $a^{\prime} \in \mathrm{A}, a^{\prime}<c$, we have $f\left(a^{\prime}\right)=g\left(a^{\prime}\right)$
- Let $f(c)=x, g(c)=y, x \neq y$, then x and y are comparable(why?), without losing generality, assume $x \preccurlyeq y$
- As g is bijective, then $g^{-1}(x) \in A-S_{A}(c)$, here $S_{A}(c)=\{p \mid p \in$ $A, p<c\}$, i.e., $g^{-1}(x) \in\{p \mid p \in A, c \preccurlyeq p\}$
- $\therefore g(c) \preccurlyeq g\left(g^{-1}(x)\right)$
- $\therefore y \preccurlyeq x$
- $\therefore x=y, f(c)=g(c)$, contradicting to C's definition
- So, f and g should be the same.
14.66. Consider the lattice M in Fig. 14-19(b).
(a) Find all join-irreducible elements.
(b) Find the atoms.
(c) Find complements of a and b, if they exist.
(d) Express each x in M as the join of irredundant join-irreducible elements.
(e) Is M distributive? Complemented?

- Does M contain a sub-lattice isomorphic to

Fig. 14-7
Suppose M is a nonempty subset of a lattice L. We say M is a sub-lattice of L if M itself is a lattice (with respect to the operations of L).

We note that M is a sub-lattice of L if and only if M is closed under the operations of \wedge and \vee of L.
14.75. A lattice M is said to be modular if whenever $a \leq c$ we have the law

$$
a \vee(b \wedge c)=(a \vee b) \wedge c
$$

(a) Prove that every distributive lattice is modular.
(b) Verify that the non-distributive lattice in Fig. 14-7(b) is modular; hence the converse of (a) is not true.
(c) Show that the nondistributive lattice in Fig. 14-7(a) is non-modular. (In fact, one can prove that every non-modular lattice contains a sublattice isomorphic to Fig. 14-7(a).)

$$
x \vee(y \wedge z)=(x \vee y) \wedge z
$$

Discussion on different cases on possible values of x, y, z : Case 1: $\boldsymbol{x}=0$

$$
\begin{aligned}
& x \vee(y \wedge z)=0 \vee(y \wedge z)=y \wedge z \\
& (x \vee y) \wedge z=(0 \vee y) \wedge z=y \wedge z
\end{aligned}
$$

(b)

Case 2: $x \in\{a, b, c\}$

- Case 2.1: $z=\boldsymbol{x}$

$$
\begin{aligned}
& x \vee(y \wedge z)=x \vee(y \wedge x)=x \\
& (x \vee y) \wedge z=(x \vee y) \wedge x=x
\end{aligned}
$$

- Case 2.2: $z=I$

$$
\begin{aligned}
& x \vee(y \wedge z)=x \vee(y \wedge I)=x \vee y \\
& (x \vee y) \wedge z=(x \vee y) \wedge I=x \vee y
\end{aligned}
$$

Case 3: $x=I, z=I$

$$
\begin{aligned}
& x \vee(y \wedge z)=I \vee(y \wedge I)=I \\
& (x \vee y) \wedge z=(I \vee y) \wedge I=I
\end{aligned}
$$

