作业1-9

UD第10章问题2，4，5，8
UD第11章问题3，7，8，9
UD第12章问题10，13b，16，20，22，23
UD第27章项目4

Problem 11.3. (a) For each $r \in \mathbb{R}$, let $A_{r}=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=r\right\}$. Is this a partition of \mathbb{R}^{3} ? If so, give a geometric description of the partitioning sets.
(b) For each $r \in \mathbb{R}$, let $A_{r}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=r^{2}\right\}$. Is this a partition of \mathbb{R}^{3} ? If so, give a geometric description of the partitioning sets.
nition. We turn to that now. A partition of a nonempty set X is a collection \mathscr{A} of subsets of X that satisfies the following three conditions.
(i) Every set $A \in \mathscr{A}$ is nonempty,
(ii) $\cup_{A \in \mathscr{A}} A=X$, and
(iii) for all $A, B \in \mathscr{A}$, if $A \cap B \neq \emptyset$, then $A=B$.
a) Yes,
I. $\forall r \in \mathbb{R}$, we have $(0,0, r) \in A_{r}$, so $A_{r} \neq \varnothing$
II. Try to show $\cup_{r \in \mathbb{R}} A_{r}=\mathbb{R}^{3}$
(1) First, it is obvious that $\forall r \in \mathbb{R}, A_{r} \subseteq \mathbb{R}^{3}$, so $\cup_{r \in \mathbb{R}} A_{r} \subseteq \mathbb{R}^{3}$
(2) Second, for each $(a, b, c) \in \mathbb{R}^{3}$, we have $a+b+c=r_{0} \in \mathbb{R}$, so $(a, b, c) \in A_{r_{0}}$; as a result, $(a, b, c) \in \cup_{r \in \mathbb{R}} A_{r}$ And consequently, $\mathbb{R}^{3} \subseteq \cup_{r \in \mathbb{R}} A_{r}$
(3) Therefore, $\cup_{r \in \mathbb{R}} A_{r}=\mathbb{R}^{3}$
III. $\forall r_{1}, r_{2} \in \mathbb{R}$, if $A_{r_{1}} \cap A_{r_{2}} \neq \emptyset$, then $A_{r_{1}}=A_{r_{2}}$
$\because A_{r_{1}} \cap A_{r_{2}} \neq \emptyset$
$\therefore \exists x \in A_{r_{1}} \cap A_{r_{2}}$
assume $\mathrm{x}=(\mathrm{a}, \mathrm{b}, \mathrm{c})$, we have $a+b+c=r_{1}$ and $a+b+c=r_{2}$
$\therefore r_{1}=r_{2}$
$\therefore A_{r_{1}}=A_{r_{2}}$

Problem 11.3. (a) For each $r \in \mathbb{R}$, let $A_{r}=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=r\right\}$. Is this a partition of \mathbb{R}^{3} ? If so, give a geometric description of the partitioning sets.
(b) For each $r \in \mathbb{R}$, let $A_{r}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=r^{2}\right\}$. Is this a partition of \mathbb{R}^{3} ? If so, give a geometric description of the partitioning sets.
nition. We turn to that now. A partition of a nonempty set X is a collection \mathscr{A} of subsets of X that satisfies the following three conditions.
(i) Every set $A \in \mathscr{A}$ is nonempty,
(ii) $\cup_{A \in \mathscr{A}} A=X$, and
(iii) for all $A, B \in \mathscr{A}$, if $A \cap B \neq \emptyset$, then $A=B$.
b) Yes,
I. $\forall r \in \mathbb{R}$, we have $(0,0, r) \in A_{r}$, so $A_{r} \neq \varnothing$

$$
A_{1}=A_{-1} ?
$$

II. Try to show $\cup_{r \in \mathbb{R}} A_{r}=\mathbb{R}^{3}$
(1) First, it is obvious that $\forall r \in \mathbb{R}, A_{r} \subseteq \mathbb{R}^{3}$, so $\cup_{r \in \mathbb{R}} A_{r} \subseteq \mathbb{R}^{3}$
(2) Second, for each $(a, b, c) \in \mathbb{R}^{3}$, we have $a^{2}+b^{2}+c^{2}=r_{0}^{2} \in \mathbb{R}$, so $(a, b, c) \in$ $A_{r_{0}} ;$ as a result, $(a, b, c) \in \cup_{r \in \mathbb{R}} A_{r}$ And consequently, $\mathbb{R}^{3} \subseteq \cup_{r \in \mathbb{R}} A_{r}$
(3) Therefore, $\cup_{r \in \mathbb{R}} A_{r}=\mathbb{R}^{3}$
III. $\forall r_{1}, r_{2} \in \mathbb{R}$, if $A_{r_{1}} \cap A_{r_{2}} \neq \emptyset$, then $A_{r_{1}}=A_{r_{2}}$
$\because A_{r_{1}} \cap A_{r_{2}} \neq \emptyset$
$\therefore \exists x \in A_{r_{1}} \cap A_{r_{2}}$
assume $\mathrm{x}=(\mathrm{a}, \mathrm{b}, \mathrm{c})$, we have $a^{2}+b^{2}+c^{2}=r_{1}^{2}$ and $a^{2}+b^{2}+c^{2}=r_{2}^{2}$
$\therefore r_{1}=r_{2}$
$\therefore A_{r_{1}}=A_{r_{2}}$

Problem 11.7. Consider the set P of polynomials with real coefficients. Decide whether or not each of the following collection of sets determines a partition of P. If you decide that it does determine a partition, show it carefully. If you decide that it does not determine a partition, list the part(s) of the definition that is (are) not satisfied and justify your claim with an example. (See Problem $\mathbf{1 0 . 8}$ for more information about polynomials.)
(a) For $m \in \mathbb{N}$, let A_{m} denote the set of polynomials of degree m. The collection of sets is $\left\{A_{m}: m \in \mathbb{N}\right\}$.
(b) For $c \in \mathbb{R}$, let A_{c} denote the set of polynomials p such that $p(0)=c$. The collection of sets is $\left\{A_{c}: c \in \mathbb{R}\right\}$.
(c) For a polynomial q, let A_{q} denote the set of all polynomials p such that q is a factor of p; that is, there is a polynomial r such that $p=q r$. The collection of sets is $\left\{A_{q}: q \in P\right\}$.
(d) For $c \in \mathbb{R}$, let A_{c} denote the set of polynomials p such that $p(c)=0$. The collection of sets is $\left\{A_{c}: c \in \mathbb{R}\right\}$.
Problem 10.8. Recall that a polynomial p over \mathbb{R} is an expression of the form $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x^{1}+a_{0}$ where each $a_{j} \in \mathbb{R}$ and $n \in \mathbb{N}$. The largest integer j such that $a_{j} \neq 0$ is the degree of p. We define the degree of the constant polynomial $p=0$ to be $-\infty$. (A polynomial over \mathbb{R} defines a function $p: \mathbb{R} \rightarrow \mathbb{R}$.)
(a) For $m \in \mathbb{N}$, let A_{m} denote the set of polynomials of degree m. The collection of sets is $\left\{A_{m}: m \in \mathbb{N}\right\}$.
I. $\forall m \in \mathbb{N}$, it is obvious that $x^{m} \in A_{m}$, so $A_{m} \neq \emptyset$
II. To show $\cup_{m \in \mathbb{N}} A_{m}=P$
(1) It is obvious that $A_{m} \subseteq \mathrm{P}$, so $\cup_{m \in \mathbb{N}} A_{m} \subseteq P$
(2) For each $p \in P$, we have $p \in A_{(\operatorname{deg}(p))} \subseteq \cup_{m \in \mathbb{N}} A_{m}$. Therefore, $P \subseteq \cup_{m \in \mathbb{N}} A_{m}$
(3) So, $\cup_{m \in \mathbb{N}} A_{m}=P$
III. To show $\forall m_{1}, m_{2} \in \mathbb{N}$, if $A_{m_{1}} \cap A_{m_{2}} \neq \emptyset$, then $A_{m_{1}}=A_{m_{2}}$
(1) $\because A_{m_{1}} \cap A_{m_{2}} \neq \varnothing$
(2) $\therefore \exists p \in A_{m_{1}} \cap A_{m_{2}}$, so $\operatorname{deg}(p)=m_{1}$ and $\operatorname{deg}(p)=m_{2}$
(3) $\therefore m_{1}=m_{2}$, so $A_{m_{1}}=A_{m_{2}}$

Special case:

$$
\begin{aligned}
p(x) & =0 \\
\operatorname{deg}(p) & =-\infty
\end{aligned}
$$

(c) For a polynomial q, let A_{q} denote the set of all polynomials p such that q is a factor of p; that is, there is a polynomial r such that $p=q r$. The collection of sets is $\left\{A_{q}: q \in P\right\}$.

Ans: No

$$
\begin{align*}
& p=(x+1)(x+2) \\
& q=(x+1) \\
& r=(x+2) \\
& \text { 1. } p \in A_{q} \\
& \text { 2. } r \in A_{q}
\end{align*}
$$

$$
\begin{aligned}
& p=(x+1)(x+2) \\
& q=(x+1) \\
& r=(x+2)
\end{aligned}
$$

So, $p=q r=r q$
$\therefore p \in A_{q}$ and $p \in A_{r}$
But, $A_{q} \neq A_{r}$

Problem 12．10．Let S and T be nonempty bounded subsets of \mathbb{R} ．
（a）Show that $\sup (S \cup T) \geq \sup S$ ，and $\sup (S \cup T) \geq \sup T$ ．
（b）Show that $\sup (S \cup T)=\max \{\sup S, \sup T\}$ ．
（c）Try to state the results of（a）and（b）in English，without using mathematical symbols．

$$
\begin{aligned}
& \text { (a) 设 } A=\sup S, B=\sup T \\
& \forall a \in S, \mathrm{~S}, \mathrm{a} \leq \mathrm{A} \\
& \forall \mathrm{~b} \in \mathrm{~T}, \mathrm{~b} \leq \mathrm{B} \\
& \text { 不妨设 } \mathrm{A} \geq \mathrm{B} \\
& \mathrm{~b} \leq \mathrm{B} \leq \mathrm{A} \\
& \text { 所以 } \text { (SUT)中任意一个元素 } \leq \mathrm{A},
\end{aligned}
$$

又因为 A 是 S 中的元素，所以 A 也是（SUT）中的元素。
$\Rightarrow A=\sup (S U T)$
$\Rightarrow \sup (S U T) \geq \sup S, \sup (S U T) \geq \sup T$

Problem 12.10. Let S and T be nonempty bounded subsets of \mathbb{R}.

(a) Show that $\sup (S \cup T) \geq \sup S$, and $\sup (S \cup T) \geq \sup T$.
(b) Show that $\sup (S \cup T)=\max \{\sup S, \sup T\}$.
(c) Try to state the results of (a) and (b) in English, without using mathematical symbols. Let $A=\sup S, B=\sup T, C=\sup (S \cup T)$

(a)

Obviously, $\forall x, x \in(\mathrm{~S} \cup T) \Rightarrow x<C$
$\therefore \forall x, x \in \mathrm{~S} \Rightarrow x<C ; \forall x, x \in \mathrm{~T} \Rightarrow x<C$
$\therefore \mathrm{C}$ is a upper bound of both S and T
As $\mathrm{A}=\sup S, B=\sup T$, by the definition of supremum, we have:
$A \leq C$ and $B \leq C$
(b)From (a) we got $C \geq \max \{A, B\}$, we only need to prove $C \leq \max \{A, B\}$, Without losing generality, assume $A \geq B$, then:

- $\forall x \in S, x \leq A$
- $\forall x \in T, x \leq B \leq A$
$\therefore \forall x, x \in(\mathrm{~S} \cup T) \Rightarrow x \leq A$
$\therefore A$ is a upper bound of $S \cup T$
As $C=\sup (S \cup T)$, by the definition of supremum, we have:
$C=\sup (\mathrm{S} \cup T) \leq A$
Consequently, $\boldsymbol{C}=\boldsymbol{\operatorname { m a x }}\{\boldsymbol{A}, \boldsymbol{B}\}$

Problem(12.16(e))
Prove that $(\mathcal{P}(\mathbb{Z}), \subseteq)$ has the "least upper set property"(in other words, show every upper bounded set has a least upper set)

- Idea: construct and prove
- Construct: for $\mathcal{A} \subseteq \mathcal{P}(\mathbb{Z})$, we can obtain a set C by:

$$
C=\bigcup_{X_{i} \in \mathcal{A}} X_{i}
$$

- Prove: try to show C is the least upper set
- Assume U is the least upper set of \mathcal{A}
- $\because \forall X_{i} \in \mathcal{A}$, it's obvious that $X_{i} \subseteq \mathrm{U}_{X_{i} \in \mathcal{A}} X_{i}=C$
- $\therefore C$ is an upper set of \mathcal{A}, i.e., $U \subseteq C$
- Then, $\forall X_{i} \in \mathcal{A} \Rightarrow X_{i} \subseteq U$
- $\therefore C=\mathrm{U}_{X_{i} \in \mathcal{A}} X_{i} \subseteq U$
- $\therefore C=U$

Problem(12.23)

Prove that for two arbitrary real numbers a and b with $a<b$, there is an irrational number c such that $a<c<b$.

$$
\text { (Hint: Consider } \frac{a}{\sqrt{2}} \text { and } \frac{b}{\sqrt{2}} \text {) }
$$

- $\frac{a}{\sqrt{2}}$ and $\frac{b}{\sqrt{2}}$ are real numbers, $a<b$
- By Theorem 12.11, there is a rational number c^{\prime} such that: $\frac{a}{\sqrt{2}}<$ $c^{\prime}<\frac{b}{\sqrt{2}}$
- $\therefore a<\sqrt{2} c^{\prime}<b$, let $c=\sqrt{2} c^{\prime}$
- Now, we have to show c is an irrational
- H : assume c is a rational number, then $\exists p, q \in \mathbb{Z}, q \neq 0$, s.t. $c=\frac{p}{q}$,
- As c^{\prime} is also a rational number, then $\exists p^{\prime}, q^{\prime} \in \mathbb{Z}, q^{\prime} \neq 0$,s.t. $c^{\prime}=\frac{p^{\prime}}{q^{\prime}}$
- So, $c=\frac{p}{q}=\sqrt{2} c^{\prime}=\frac{\sqrt{2} p^{\prime}}{q^{\prime}}$
- $\therefore \sqrt{2}=\frac{p q^{\prime}}{p^{\prime} s}$ should be an rational number, contracting with the fact that $\sqrt{2}$ is irrational.
- $\therefore \mathrm{H}$ is not right, and c is an irrational

