作业1-9

UD第10章问题2、4、5、8 UD第11章问题**3、7**、8、9 UD第12章问题**10**、13b、16、20、22、23 UD第27章项目4

Problem 11.3. (a) For each $r \in \mathbb{R}$, let $A_r = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = r\}$. Is this a partition of \mathbb{R}^3 ? If so, give a geometric description of the partitioning sets.

(b) For each $r \in \mathbb{R}$, let $A_r = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = r^2\}$. Is this a partition of \mathbb{R}^3 ? If so, give a geometric description of the partitioning sets.

nition. We turn to that now. A **partition of a nonempty set** X is a collection \mathscr{A} of subsets of X that satisfies the following three conditions.

- (i) Every set $A \in \mathscr{A}$ is nonempty,
- (ii) $\bigcup_{A \in \mathscr{A}} A = X$, and
- (iii) for all $A, B \in \mathscr{A}$, if $A \cap B \neq \emptyset$, then A = B.

a) Yes,

I.
$$\forall r \in \mathbb{R}$$
, we have $(0,0,r) \in A_r$, so $A_r \neq \emptyset$

II. Try to show
$$\bigcup_{r \in \mathbb{R}} A_r = \mathbb{R}^3$$

- (1) First, it is obvious that $\forall r \in \mathbb{R}, A_r \subseteq \mathbb{R}^3$, so $\bigcup_{r \in \mathbb{R}} A_r \subseteq \mathbb{R}^3$
- 2 Second, for each $(a, b, c) \in \mathbb{R}^3$, we have $a + b + c = r_0 \in \mathbb{R}$, so $(a, b, c) \in A_{r_0}$; as a result, $(a, b, c) \in \bigcup_{r \in \mathbb{R}} A_r$ And consequently, $\mathbb{R}^3 \subseteq \bigcup_{r \in \mathbb{R}} A_r$

③ Therefore,
$$\bigcup_{r \in \mathbb{R}} A_r = \mathbb{R}^3$$

III.
$$\forall r_1, r_2 \in \mathbb{R}$$
, if $A_{r_1} \cap A_{r_2} \neq \emptyset$, then $A_{r_1} = A_{r_2}$

$$\therefore A_{r_1} \cap A_{r_2} \neq 0$$

$$\therefore \exists x \in A_{r_1} \cap A_{r_2}$$

assume x=(a,b,c), we have
$$a + b + c = r_1$$
 and $a + b + c = r_2$

$$\therefore r_1 = r_2 \\ \therefore A_{r_1} = A_{r_2}$$

Problem 11.3. (a) For each $r \in \mathbb{R}$, let $A_r = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = r\}$. Is this a partition of \mathbb{R}^3 ? If so, give a geometric description of the partitioning sets.

(b) For each $r \in \mathbb{R}$, let $A_r = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = r^2\}$. Is this a partition of \mathbb{R}^3 ? If so, give a geometric description of the partitioning sets.

nition. We turn to that now. A **partition of a nonempty set** X is a collection \mathscr{A} of subsets of X that satisfies the following three conditions.

- (i) Every set $A \in \mathscr{A}$ is nonempty,
- (ii) $\bigcup_{A \in \mathscr{A}} A = X$, and
- (iii) for all $A, B \in \mathscr{A}$, if $A \cap B \neq \emptyset$, then A = B.

b) Yes,

I.
$$\forall r \in \mathbb{R}$$
, we have $(0,0,r) \in A_r$, so $A_r \neq \emptyset$

$$A_1 = A_{-1}$$
 ?

II. Try to show
$$\bigcup_{r \in \mathbb{R}} A_r = \mathbb{R}^3$$

(1) First, it is obvious that $\forall r \in \mathbb{R}, A_r \subseteq \mathbb{R}^3$, so $\bigcup_{r \in \mathbb{R}} A_r \subseteq \mathbb{R}^3$
(2) Second, for each $(a, b, c) \in \mathbb{R}^3$, we have $a^2 + b^2 + c^2 = r_0^2 \in \mathbb{R}$, so $(a, b, c) \in A_{r_0}$; as a result, $(a, b, c) \in \bigcup_{r \in \mathbb{R}} A_r$ And consequently, $\mathbb{R}^3 \subseteq \bigcup_{r \in \mathbb{R}} A_r$
(3) Therefore, $\bigcup_{r \in \mathbb{R}} A_r = \mathbb{R}^3$
III. $\forall r_1, r_2 \in \mathbb{R}$, if $A_{r_1} \cap A_{r_2} \neq \emptyset$, then $A_{r_1} = A_{r_2}$
 $\therefore A_{r_1} \cap A_{r_2} \neq \emptyset$
 $\therefore \exists x \in A_{r_1} \cap A_{r_2}$
assume x=(a,b,c), we have $a^2 + b^2 + c^2 = r_1^2$ and $a^2 + b^2 + c^2 = r_2^2$
 $\therefore r_1 = r_2$
 $\therefore A_{r_1} = A_{r_2}$

Problem 11.7. Consider the set *P* of polynomials with real coefficients. Decide whether or not each of the following collection of sets determines a partition of *P*. If you decide that it does determine a partition, show it carefully. If you decide that it does not determine a partition, list the part(s) of the definition that is (are) not satisfied and justify your claim with an example. (See Problem **10.8** for more information about polynomials.)

- (a) For m ∈ N, let A_m denote the set of polynomials of degree m. The collection of sets is {A_m : m ∈ N}.
- (b) For c ∈ ℝ, let A_c denote the set of polynomials p such that p(0) = c. The collection of sets is {A_c : c ∈ ℝ}.
- (c) For a polynomial q, let A_q denote the set of all polynomials p such that q is a factor of p; that is, there is a polynomial r such that p = qr. The collection of sets is $\{A_q : q \in P\}$.
- (d) For c ∈ R, let A_c denote the set of polynomials p such that p(c) = 0. The collection of sets is {A_c : c ∈ R}.

Problem 10.8. Recall that a **polynomial** p over \mathbb{R} is an expression of the form $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x^1 + a_0$ where each $a_j \in \mathbb{R}$ and $n \in \mathbb{N}$. The largest integer j such that $a_j \neq 0$ is the **degree** of p. We define the degree of the constant polynomial p = 0 to be $-\infty$. (A polynomial over \mathbb{R} defines a function $p : \mathbb{R} \to \mathbb{R}$.)

(a) For $m \in \mathbb{N}$, let A_m denote the set of polynomials of degree m. The collection of sets is $\{A_m : m \in \mathbb{N}\}$.

$$\begin{array}{ll} I. & \forall m \in \mathbb{N}, \text{it is obvious that } x^m \in A_m, \text{ so } A_m \neq \emptyset \\ \hline \\ \text{II. To show } \bigcup_{m \in \mathbb{N}} A_m = P \\ \hline \\ 1 & \text{It is obvious that } A_m \subseteq P, \text{ so } \bigcup_{m \in \mathbb{N}} A_m \subseteq P \\ \hline \\ 2 & \text{For each } p \in P, \text{ we have } p \in A_{(\deg(p))} \subseteq \bigcup_{m \in \mathbb{N}} A_m. \text{ Therefore, } P \subseteq \bigcup_{m \in \mathbb{N}} A_m \\ \hline \\ 3 & \text{So, } \bigcup_{m \in \mathbb{N}} A_m = P \\ \hline \\ \text{III. To show } \forall m_1, m_2 \in \mathbb{N}, \text{ if } A_{m_1} \cap A_{m_2} \neq \emptyset, \text{ then } A_{m_1} = A_{m_2} \\ \hline \\ 1 & \because A_{m_1} \cap A_{m_2} \neq \emptyset \\ \hline \\ 2 & \therefore \exists p \in A_{m_1} \cap A_{m_2}, \text{ so } \deg(p) = m_1 \text{ and } \deg(p) = m_2 \\ \hline \\ 3 & \therefore m_1 = m_2, \text{ so } A_{m_1} = A_{m_2} \end{array}$$

Special case: p(x) = 0 $deg(p) = -\infty$ (c) For a polynomial q, let A_q denote the set of all polynomials p such that q is a factor of p; that is, there is a polynomial r such that p = qr. The collection of sets is $\{A_q : q \in P\}$.

$$p = (x + 1)(x + 2)$$

$$q = (x + 1)$$

$$r = (x + 2)$$

1. $p \in A_q$
2. $r \in A_q$

Ans: No

$$p = (x + 1)(x + 2)$$

$$q = (x + 1)$$

$$r = (x + 2)$$
So, $p = qr = rq$

$$\therefore p \in A_q \text{ and } p \in A_r$$
But, $A_q \neq A_r$

Problem 12.10. Let *S* and *T* be nonempty bounded subsets of \mathbb{R} .

- (a) Show that $\sup(S \cup T) \ge \sup S$, and $\sup(S \cup T) \ge \sup T$.
- (b) Show that $\sup(S \cup T) = \max\{\sup S, \sup T\}$.
- (c) Try to state the results of (a) and (b) in English, without using mathematical symbols.

Problem 12.10. Let *S* and *T* be nonempty bounded subsets of \mathbb{R} .

- (a) Show that $\sup(S \cup T) \ge \sup S$, and $\sup(S \cup T) \ge \sup T$.
- (b) Show that $\sup(S \cup T) = \max\{\sup S, \sup T\}$.
- (c) Try to state the results of (a) and (b) in English, without using mathematical symbols. Let $A = \sup S, B = \sup T, C = \sup(S \cup T)$

(a)

Obviously,
$$\forall x, x \in (S \cup T) \Rightarrow x < C$$

 $\therefore \forall x, x \in S \Rightarrow x < C : \forall x, x \in T \Rightarrow x < C$

As $A = \sup S, B = \sup T$, by the definition of supremum, we have: $A \le C$ and $B \le C$

(b)From (a) we got $C \ge max\{A, B\}$, we only need to prove $C \le max\{A, B\}$, Without losing generality, assume $A \ge B$, then:

- $\forall x \in S, x \leq A$
- $\forall x \in T, x \leq B \leq A$
- $\therefore \forall x, x \in (S \cup T) \Rightarrow x \le A$
- $\therefore A$ is a upper bound of S $\cup T$

As $C = \sup(S \cup T)$, by the definition of supremum, we have:

$$C = \sup(\mathsf{S} \cup T) \le A$$

Consequently, $C = max\{A, B\}$

Problem(12.16(e))

Prove that $(\mathcal{P}(\mathbb{Z}), \subseteq)$ has the "least upper set property" (in other words, show every upper bounded set has a least upper set)

- Idea: construct and prove
 - Construct: for $\mathcal{A} \subseteq \mathcal{P}(\mathbb{Z})$, we can obtain a set *C* by:

$$C = \bigcup_{X_i \in \mathcal{A}} X_i$$

- Prove: try to show C is the least upper set
 - Assume U is the least upper set of \mathcal{A}
 - $: \forall X_i \in \mathcal{A}$, it's obvious that $X_i \subseteq \bigcup_{X_i \in \mathcal{A}} X_i = C$
 - \therefore *C* is an upper set of \mathcal{A} , i.e., $U \subseteq C$
 - Then, $\forall X_i \in \mathcal{A} \Rightarrow X_i \subseteq U$
 - $\therefore C = \bigcup_{X_i \in \mathcal{A}} X_i \subseteq U$
 - $\therefore C = U$

Problem(12.23) Prove that for two arbitrary real numbers a and b with a < b, there is an irrational number *c* such that a < c < b.

(Hint: Consider
$$\frac{a}{\sqrt{2}}$$
 and $\frac{b}{\sqrt{2}}$)

- $\frac{a}{\sqrt{2}}$ and $\frac{b}{\sqrt{2}}$ are real numbers, a < b
- By Theorem 12.11, there is a rational number c' such that: $\frac{a}{\sqrt{2}} < c'$ $c' < \frac{b}{\sqrt{2}}$
- $\therefore a < \sqrt{2}c' < b$, let $c = \sqrt{2}c'$
- Now, we have to show c is an irrational

 - H: assume c is a rational number, then ∃p, q ∈ Z, q ≠ 0,s.t. c = p/q/q/q/e
 As c' is also a rational number, then ∃p', q' ∈ Z, q' ≠ 0,s.t. c' = p/q/q/q/e

 - So, $c = \frac{p}{q} = \sqrt{2}c' = \frac{\sqrt{2}p'}{q'}$ $\therefore \sqrt{2} = \frac{pq'}{p'q}$ should be an rational number, contracting with the fact that $\sqrt{2}$ is irrational.
 - : H is not right, and c is an irrational