2-11 Heapsort

Hengfeng Wei

hfwei@nju.edu.cn

May 12, 2020

2-11 Heapsort

Obama in a job interview at Google

"What is most efficient way to sort a million 32-bit integers?" Obama: "The bubblesort would be the wrong way to go."

Obama: "The bubblesort would be the wrong way to go."

$O \quad \Omega \quad \Theta$

Best case

Worst case

Average case

Hengfeng Wei (hfwei@nju.edu.cn)

2-11 Heapsort

May 12, 2020 3/22

Worst-case of MAX-HEAPIFY (TC 6.2-6)

Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $\Omega(\log n)$.

COMPARE vs. Exchange

2-11 Heapsort

Worst-case of MAX-HEAPIFY (Section 6.2 of CLRS) Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $O(\log n)$.

 $W(n) \le H(n)$

No Examples Here!

Hengfeng Wei (hfwei@nju.edu.cn)

2-11 Heapsort

Therefore ...

Worst-case of MAX-HEAPIFY

Show that the worst-case running time of MAX-HEAPIFY on an n-element heap is $\Theta(\log n)$.

	0	Ω	Θ
Worst-case	"power" of \mathcal{A}	by example	$O = \Omega$

Worst-case of HEAPSORT (TC 6.4-4)

Show that the worst-case running time of HEAPSORT is $\Omega(n \log n)$.

By Example.

Non-proof.

What is wrong?

Hengfeng Wei (hfwei@nju.edu.cn)

2-11 Heapsort

May 12, 2020 7/22

Worst-case of HEAPSORT (TC 6.4 - 4)

Show that the worst-case running time of HEAPSORT is $\Omega(n \log n)$.

Heap in decreasing order?

T(7) = 2 + 1 + 1 + 1 + 0 + 0 = 5

$$T(7) = 2 + 2 + 2 + 1 + 1 + 0 = 8$$

(Ex. 23, Section 5.2.3, TAOCP Vol 3)

$$\sum_{r=1}^{n-1} \lfloor \log r \rfloor = n \lfloor \log n \rfloor - 2^{\lfloor \log n \rfloor + 1} + 2 = \Omega(n \log n)$$

Worst-case of HEAPSORT (TC 6.4 - 4)

Show that the worst-case running time of HEAPSORT is $O(n \log n)$.

$$\sum_{r=1}^{n-1} \lfloor \log r \rfloor = n \lfloor \log n \rfloor - 2^{\lfloor \log n \rfloor + 1} + 2 = O(n \log n)$$

No Examples Here!

Therefore ...

Worst-case of HEAPSORT (TC 6.4 - 4)

Show that the worst-case running time of HEAPSORT is $\Theta(n \log n)$.

	0	Ω	Θ
Worst-case	"power" of ${\cal A}$	by example	$O = \Omega$

Algorithm ${\cal A}$

Inputs ${\mathcal I}$ of size n

	0	Ω	Θ
Best-case	by example	"weakness" of \mathcal{A}	$O = \Omega$
Worst-case	"power" of \mathcal{A}	by example	$O = \Omega$

Best-case of HEAPSORT (TC 6.4-5^{\star})

Show that when all elements are distinct, the **best-case** running time of HEAPSORT is $\Omega(n \log n)$.

Best-case of HEAPSORT (Ex. 32, Section 5.2.3, TAOCP Vol 3)

Prove that the number of heapsort promotions, B, is always at least $\frac{1}{2}N\log N + O(N)$, if the keys being sorted are distinct.

Best-case of HEAPSORT (TC $6.4-5^{\star}$)

Show that when all elements are distinct, the **best-case** running time of HEAPSORT is $\Omega(n \log n)$.

Consider the largest $m = \lceil n/2 \rceil$ elements. The largest m elements form a subtree. $\geq \lfloor m/2 \rfloor$ of m must be nonleaves of that subtree. $\geq \lfloor m/2 \rfloor$ of m appear in the first $\lfloor n/2 \rfloor$ positions. They must be promoted to the root before being EXTRACT-MAX.

$$\sum_{k=1}^{\lfloor m/2 \rfloor} \lfloor \log k \rfloor = \frac{1}{2}m\log m + O(m)$$

 $B(n) \ge \frac{1}{4}n\log n + O(n) + B(\lfloor n/2 \rfloor) \implies B(n) \ge \frac{1}{2}n\log n + O(n)$

Hengfeng Wei (hfwei@nju.edu.cn)

Best-case of HEAPSORT (TC 6.4 - 5)

Show that when all elements are distinct, the best-case running time of HEAPSORT is $O(n \log n)$.

By Example.

"On the Best Case of Heapsort" (1994)

$$B(n) \le \frac{1}{2}n\log n + O(n\log\log n)$$

Therefore ...

Best-case of HEAPSORT (TC 6.4 - 5)

Show that when all elements are distinct, the best-case running time of HEAPSORT is $\Theta(n \log n)$.

	0	Ω	Θ
Best-case	by example	"weakness" of \mathcal{A}	$O = \Omega$

Algorithm ${\cal A}$

Inputs ${\mathcal I}$ of size n

	0	Ω	Θ
Best-case	by example	"weakness" of \mathcal{A}	$O = \Omega$
Worst-case	"power" of \mathcal{A}	by example	$O = \Omega$
Average-case	≤	2	$O = \Omega$

Average-case of HEAPSORT

Assume that all elements are distinct. Show that the average-case running time of HEAPSORT is $\Theta(n \log n)$.

I said simple, not easy.

"By a surprisingly short counting argument."

Robert Sedgewick

D. E. Knuth

"It is elegant. see exercise 30."

2-11 Heapsort

Heap Identity (Additional)

$$\forall h \ge 1 : \lceil \log(\lfloor \frac{1}{2}h \rfloor + 1) \rceil + 1 = \lceil \log(h+1) \rceil$$

 $\lceil \log(h+1) \rceil = \lfloor \log h \rfloor + 1, \forall h \ge 1$

$$\lfloor \log \lfloor \frac{1}{2}h \rfloor \rfloor + 1 = \lceil \log (\lfloor \frac{1}{2}h \rfloor + 1) \rceil = \lceil \log(h+1) \rceil - 1 = \lfloor \log h \rfloor$$

Depth of h = (Depth of the parent of h) + 1

Thank You!

Office 302 Mailbox: H016 hfwei@nju.edu.cn