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 1969] MATHEMATICAL NOTES 1037

 ON CANCELLATION IN GROUPS

 R. HIRSHON, Polytechnic Institute of Brooklyn

 Let A XB represent the direct product of the groups A and B. We shall
 say that B may be cancelled in direct products if

 A X B - A1 X B1, B B,

 imply A tA1 for any A.
 It seems natural to inquire about those groups which may be cancelled in

 direct products. We will show in this paper that a finite group B may be can-
 celled in direct products. As far as we can determine, this result does not appear
 in any standard text in group theory or algebra, perhaps because it appears to
 have been discovered as recently as 1947 ([4], introduction), and apparently is
 still not well known. Good use of it might be made, for example, in proving that
 the decomposition of a finite group as a direct product of indecomposable groups
 is unique up to isomorphism.

 We present a proof of the cancellation theorem which we feel is the simplest
 available and is suitable for undergraduates. We also present in this paper an
 outline of a proof that an infinite cyclic group may not, in general, be cancelled in
 direct products, thus giving an example of the "simplest" type of group which
 may not be cancelled.

 CANCELLATION THEOREM. If B is a finite group, B may be cancelled in
 direct products.

 Proof. We olDserve first that it suffices to show

 (1) G = D X B = D1 X B1, B = B1, imply D : D1.

 We prove (1) by induction on j B I, the order of B.
 Clearly (1) is true if |B| =1. Assume (1) is true for groups B, with B| <k.

 We prove (1) is true if |B| k. First observe that if BCrD1=1 then G-BXD1,
 so that D - G/B,: D1. Hence, without loss of generality, we may assume
 BfDD1$ 1. Also by symmetry we may assume

 F = BC nD1 $1, K= Bi D 0 1.

 Now from (1), we may see

 (2) G/(F X K) = (B X D)/(F X K) = (B1 X D1)/(K X F).

 By a standard isomorphism theorem, we see from (2)

 (B/F) X (D/K) (B1/K) X (DI1/F).

 Hence, since B z B1, we may write

 (3) B X (B/F) X (D/K) B1 X (B1/K) X (D1/F).

 However,
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 B X (B/F) X (D/K) [B X (DIK)] X B/F - [(B X D)/K] X B/F

 [(B1 X D)/IK] X B/F : (B1/K) X D1 X B/F.

 In summary, we have

 (4) B X (B/F) X D/K - (B1/K) X D1 X B/F.

 Note that our hypothesis is symmetrical in B and B1 and D and D1, so if we
 interchange B and B1 and D and D1 (and hence F and K), we see from (4)

 (5) B1 X (B1/K) X D1/F (B/F) X D X B1/K.

 Now note from (3) that the groups on the left hand sides of (4) and (5) are
 isomorphic. Consequently, the groups on the right hand sides of (4) and (5) are
 isomorphic; that is,

 (6) Li = DI X (B/F) X (B1/K) t D X (B/F) X (B1iK) = L2.

 Hence we may apply our inductive assumption twice in (6); that is, first cancel
 B1/K in (6) and then cancel B/F. (To be quite precise, by using an isomorphism
 of L1 onto L2 obtained from (6), write (6) over as an equality between decom-
 positions of L2, and then apply the inductive assumption once, and then repeat

 this procedure again.) The result is D1iD, and the theorem is complete.
 Kaplansky (in [5] p. 13) posed the following problem:
 If B and B1 are infinite cyclic abelian groups, and A is abelian and A XB

 zA1,XB1, is A ;A1? The question is answered affirmatively in [1], p. 55. It is
 surprising to discover that an infinite cyclic group may not be cancelled in gen-
 eral.

 One can see the essential reason for this by considering a group H with the
 following properties:

 (a) H=(a)L, LO'(a)=1, LAH,
 where (a) is an infinite cyclic group generated by a.

 (b) There exists d, d > 1, such that ad is in the centralizer of L.
 (c) K = (au)L is not isomorphic to H, where u is an integer for which there

 exist integers s and e such that

 (d) eu-sd=+1.
 Then if (z) is an infinite cyclic group and G = (z) XH and if we set w =zead,
 M= (zau)L, one can show M~ K and

 G = (z) X H = (w) X M.

 Since M and H are not isomorphic, this shows that an infinite cyclic group may
 not be cancelled in general. An example of such a group H is a group with two
 generators a and y, with defining relations a-lya = y4, ylO24 = y. One may take
 L=(y), d=5, u=2, s=1, e=2. We omit the proof that this group has the
 desired properties.

 In closing, we point out that a group with a principal series, that is, one
 which obeys the ascending and descending chain condition for normal sub-
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 groups, may be cancelled in direct products. The proof is essentially the same
 as the one we have given for finite groups except that one uses induction on the
 length of a principal series. Some applications of this cancellation result appear
 in [2]. A sufficient condition for the cancellation of infinite groups which obey
 the maximal condition for normal subgroups, is given in [3].
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 A MAXIMUM MODULUS PRINCIPLE FOR CLOSED ALGEBRAS OF
 LIPSCHITZ FUNCTIONS

 R. M. CROWNOVER, University of Missouri

 Let us call a complex-valued function f on a metric space (X, d) an LOC
 function if f satisfies a uniform Lipschitz condition on each compact subset of X,

 i.e., if for each compact ECX, there is a constant KB(f) such that for x, yEE,

 f(x) -f(y) I < KE(f)d(x, y).
 For example, each analytic function on a plane domain is an LOC function.

 In general, uniform limits of LOC functions are not LOC functions. However,
 if the functions are analytic functions on a plane domain, then, of course, the
 uniform limits are again LOC functions. In the direction of a converse of this
 result, we shall obtain a maximum modulus theorem for certain algebras of LOC
 functions which are closed under uniform limits, and indeed obtain analyticity
 in one special case.

 LEMMA. Let A be a linear space of bounded functions on (X, d) which is closed
 in sup norm. If ECX, and each f EA satisfies a uniform Lipschitz condition on E,

 then there exists a constant Kr such that for any f C=A with If-:! < 1,

 (1) I f(x)-f(y) ? < KE d(x, y) for x, y E E.
 Proof. Let S= {f:f CA and such that for any x, y EE, If (x) -f(y) I C d(x, y) }.

 Then A = U'I (nS); since A is a complete metric space, the Baire category
 theorem applies, implying for some n, the set nS = nS has nonvoid interior.
 Consequently for some foES, and r>O, SDfo+N(O; r), where N(O; r)

 = {h: hSA and I[h[|, <r}. Since S is symmetric, -fo+N(O; r)CS, and since S
 isconvex, for each hECN(O; r), h-=(-fo+h)+ (fo+h) lies in S, i.e., N(O; r)CS.
 It follows that if KE = 1/r, then (1) holds for all x, yEE.

 We now prove the aforementioned maximum modulus theorem.
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