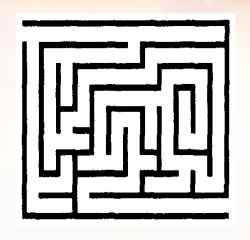


计算机问题求解一论题2-15-用于动态等价关系的数据结构

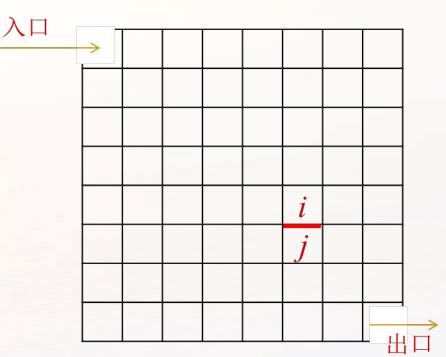
TC-17、21

Part I Union-Find



问题1:

你能否基于动态等 价关系的概念来考 虑如何"建"迷宫?



如何判定一个对象属于哪个等价类? 如何将两个等价类合并为一个?

UnionFind — 一种抽象数据类型

集合 $S = \{S_1, S_2, ..., S_k \mid S_i \cap S_j = \emptyset, i, j \in \{1, 2, ..., k\}, \exists i \neq j\}$

定义操作集如下:

- (创建) Make-Set(x): x为不属于其它任意已创建集合的对象,操作结果 是 $\{x\}$
- (结构) Union(x,y): x,y是任意两个对象,假设他们分别属于集合 S_x , S_y , 操作结果: 用集合 $S_x \cup S_y$ 替换 \mathcal{S} 中原来的 S_x 和 S_y 。
- (查询) Find-Set(x): x是任意对象,操作结果是指向x所属集合的指针。

问题2:

如果要实现这一结构。还需要考虑什么?

问题3:

什么是动态集合的representative? 讨论数学与讨论数据结构时它有什么差别? 表示方式称为"well-defined"的要求是什么?

你还记得以前我们讨论等价类"乘法"时碰到过的问题吗?

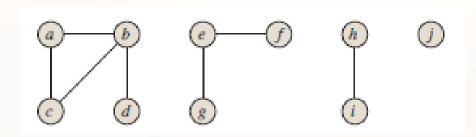
We care only that if we ask for the representative of a dynamic set twice without modifying the set between the requests, we get the same answer both times.

问题4:

我们讨论的不是一个算法,而是一个数据结构,那所谓"时间复"条性分析"究竟是什么意思呢?

考虑n次MakeSet, m次各种操作(三种)的序列的代价。

将无向图分解为连通分支的集合



- 1 **for** each vertex $v \in G.V$
- 2 MAKE-SET(ν)
- 3 **for** each edge $(u, v) \in G.E$
- 4 **if** FIND-SET(u) \neq FIND-SET(v)
- 5 UNION(u, v)

SAME-COMPONENT (u, v)

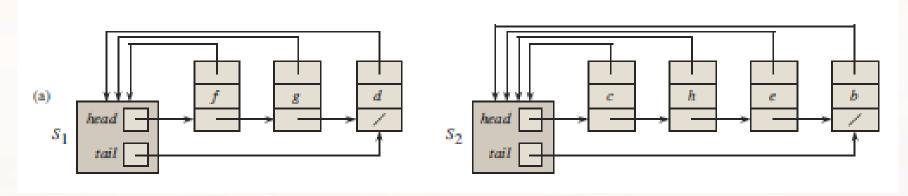
- 1 **if** FIND-SET(u) == FIND-SET(v)
- 2 **return** TRUE
- 3 else return FALSE

Edge processed	Collection of disjoint sets										
initial sets	{a}	{ <i>b</i> }	$\{c\}$	$\{d\}$	$\{e\}$	{ <i>f</i> }	{g}	{ <i>h</i> }	$\{i\}$	{ <i>j</i> }	
(b,d)	{a}	$\{b,d\}$	$\{c\}$		$\{e\}$	{ <i>f</i> }	$\{g\}$	$\{h\}$	$\{i\}$	{ <i>j</i> }	
(e,g)	{a}	$\{b,d\}$	$\{c\}$		$\{e,g\}$	{ <i>f</i> }		$\{h\}$	$\{i\}$	{ <i>j</i> }	
(a,c)	$\{a,c\}$	$\{b,d\}$			$\{e,g\}$	{ <i>f</i> }		$\{h\}$	$\{i\}$	$\{j\}$	
(h,i)	$\{a,c\}$	$\{b,d\}$			$\{e,g\}$	{ <i>f</i> }		$\{h,i\}$		$\{j\}$	
(a,b)	$\{a,b,c,d\}$				$\{e,g\}$	{ <i>f</i> }		$\{h,i\}$		<i>{j</i> }	
(e, f)	$\{a,b,c,d\}$				$\{e,f,g\}$			$\{h,i\}$		{ <i>j</i> }	
(b,c)	$\{a,b,c,d\}$				$\{e,f,g\}$			$\{h,i\}$		{ <i>j</i> }	

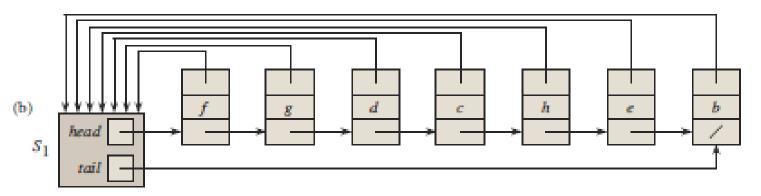
注意:

上面的代码段 并不输出左表 最下面一行, 只是提供查询 "服务"。

Implementing by Linked-List



操作union(g,e)执行后



问题5:

为什么用链表实现,每个操作的平均代价可能会是线性的?

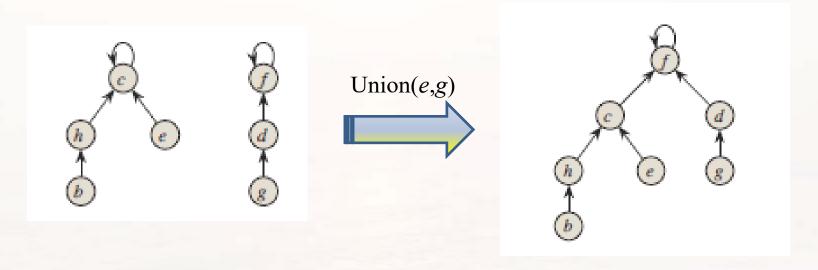
Union操作对象的次序不影响结果,却影响效率,为什么? 这对你有什么启发?

当我们打算合并两个链表时,应该总是选择小的并并入大的, 而不是相反或者"随意"!

这就是"weighted-union",虽然单看一次操作,代价仍然可能是线性的,但涉及n个初始对象长度为m的(含3种操作)序列的代价为:

 $O(m+n\lg n)$

更适合的实现结构: inTree 与 disjoint-set Forest



问题6:

这些树和前面介绍的搜索树有什么不同? 你认为不同的算法意义在哪里?

问题7。

disjoint-set forest中的树结构性质中哪些只与操作代价有关。却与操作结果无关?这对改进算法有什么启示?

什么地方需要改进?

Find(x)的代价与x的深度有关。

控制树高度: Union by Rank

```
MAKE-SET(x)
   x \cdot p = x
  x.rank = 0
Union(x, y)
   LINK(FIND-SET(x), FIND-SET(y))
Link(x, y)
   if x.rank > y.rank
       y \cdot p = x
   else x.p = y
       if x.rank == y.rank
            y.rank = y.rank + 1
```

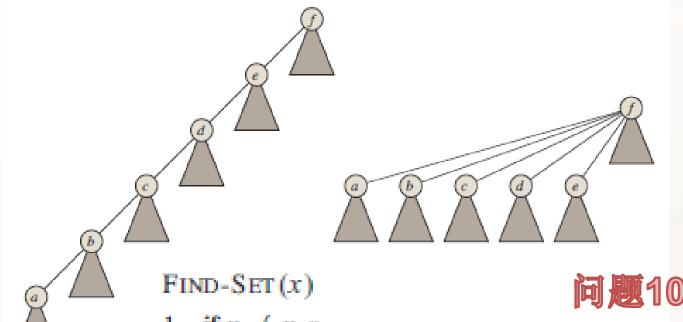
问题8:

你能解释rank的值及其 更新的意义吗?

问题9:

哪里体现树高度控制,与weighted-union有什么异同?为什么前面不需要修改rank?

降低结点深度: Path Compression



if $x \neq x.p$

x.p = FIND-Set(x.p)

return x.p

书上说 "a two-pass method",什么意思? 问题10:

为什么一个递 归语句就能使 左图变成右边 的样子?

Part II Amortized Analysis

k 位二进计数器

Counter value	MINGHSHANSHSHINO	Total cost
0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	0
1	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1$	1
2	0 0 0 0 0 0 1 0	3
3	0 0 0 0 0 0 1 1	4
4	0 0 0 0 0 1 0 0	7
5	0 0 0 0 0 1 0 1	8
6	0 0 0 0 0 1 1 0	10
7	0 0 0 0 0 1 1 1	11
8	0 0 0 0 1 0 0	15
9	0 0 0 0 1 0 0 1	16
10	0 0 0 0 1 0 1 0	18
11	0 0 0 0 1 0 1 1	19
12	0 0 0 0 1 1 0 0	22
13	0 0 0 0 1 1 0 1	23
14	0 0 0 0 1 1 1 0	25
15	0 0 0 0 1 1 1 1	26
16	0 0 0 1 0 0 0 0	31

INCREMENT(A)

```
1 i = 0

2 while i < A.length and A[i] == 1

3 A[i] = 0

4 i = i + 1

5 if i < A.length 当前A[i] = 0,

6 A[i] = 1 否则"溢出"
```

问题11:

按照flip次数计,加1最多要做k次操作,那么 从0加到n,似乎worstcase代价为O(kn),这 合理吗?

大代价操作执行次数的上限

考虑计数器的值从0上升到n,即执行n次increment操作。

问题12:

上面的例子中,计数器增值到32, increment操作最多做5次flip,这样的操 作仅有1次,为什么?需要3次flip的 increment操作需要几次?

代价大的情况发生频度是受限制的,而且这个限制与较小代价操作的数量有关。

Amortized Analysis: Aggregate 方法

计算连续n次increment操作worst-case的总次数。

显然: A[i] (i=0,1,2,...k-1) 在 "每2ⁱ次" 操作中只被flip一次。

所以,总操作次数为:

$$\sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor < n \sum_{i=0}^{\infty} \frac{1}{2^i}$$

$$= 2n,$$

换句话说:最坏情况下,操作平均代价为O(1)而执行n次increment操作的代价是O(n)

问题17:

这为什么不是 "average case"?

Amortized Analysis: Accounting 方法

同样考虑n个increment操作的序列。不简单计算 "总价" , 而是针对不同的操作 (或者同一操作的不同情况) 采用不同的 "记账" 方式。

按照新的"记账"方式计算的代价称为"accounting cost",如果希望accounting cost能作为实际代价的上限,则必须保证操作序列过程中的任何时刻,实际代价不大于accounting cost。(这相当于为了未来开支预先存些钱)

While循环外的flip(line 6)为**set**(0变为1)操作,而while循环内的flip(line 3)为 **reset**(1变为0)操作。

则accounting cost指定如下: set: 2 ("用1存1") reset: 0 ("积分支付")

任何时刻, 计数器中"1"的位数即当前"积分"数, 因此不会为负(不会"透支"); 总代价也不会大于当前计数器的值的2倍。

Amortized Analysis: Potential 方法

在操作序列中积累(或释放)"势能"。将执行完第I 次操作后整个结构的"势能"定义为 $\Phi(D_i)$,每一步操作(不论是什么操作)的amortized cost为:

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
. 实际代价与"势能"变化量之和

在计数器问题中,定义 $\Phi(D_i)$ =第i次操作后计数器中1的个数 b_i 。 $\Phi(D_0)$ =0。

注意:如果将第i次操作中有 t_i 位被reset(置0),则 $b_i \leq b_{i-1} - t_i + 1$

注意:

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}))$$

$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0}).$$

所以,只要 $\Phi(D_n) \geq \Phi(D_0)$ Amortized cost就可以作为实际 代价的上限。

由上式可知:

$$\Phi(D_i) - \Phi(D_{i-1}) \le (b_{i-1} - t_i + 1) - b_{i-1}$$

= $1 - t_i$.

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

 $\leq (t_i + 1) + (1 - t_i)$
 $= 2$.

"双重改进"的Union-Find的效率

问题13: 为什么对于Union-Find操作序列的 代价分析应采用amortized方法?

考虑到每个操作的实际代价,从"蓄能"与"耗能"的角度考虑,每个操作具有什么特性?

为了便于理清楚,书上是将union分拆为 find和link分别考虑的。

Analysis: the Basic Idea

- cFind may be an expensive operation, in the case that find(i) is executed and the node i has great depth.
- However, such cFind can be executed only for limited times, relative to other operations of lower cost.
- So, amortized analysis applys.

Amortized Time Analysis

- Amortized equation:
 - $amortized\ cost = actual\ cost + accounting\ cost$
- Design goals for accounting cost
 - In any legal sequence of operations, the sum of the accounting costs is nonnegative.
 - The amortized cost of each operation is fairly regular, in spite of the wide fluctuate possible for the actual cost of individual operations.

Co-Strength of wUnion and cFind

- The number of link operations done by a Union-Find program implemented with wUnion and cFind, of length m on a set of n elements is in $O((n+m)\lg^*(n))$ in the worst case.
- What's $\lg*(n)$?
 - Define the function *H* as following:

$$\begin{cases} H(0) = 1 \\ H(i) = 2^{H(i-1)} \text{ for } i > 0 \end{cases}$$

- Then, $\lg^*(j)$ for $j \ge 1$ is defined as:

$$\lg *(j) = \min\{ k | H(k) \ge j \}$$

Definitions with a *Union-Find* Program *P*

- Forest F: the forest constructed by the sequence of *union* instructions in P, assuming:
 - wUnion is used;
 - the *find*s in the *P* are ignored
- Height of a node v in any tree: the height of the subtree rooted at v
- \blacksquare Rank of v: the height of v in F

Note: *cFind* changes the height of a node, but the rank for any node is invariable.

Constraints on Ranks in F

■ The upper bound of the number of nodes with rank r $(r \ge 0)$ is $\frac{n}{2^r}$

- Remember that the height of the tree built by *wUnion* is at most $\lfloor \lg n \rfloor$, which means the subtree of height *r* has at least 2^r nodes.
- The subtrees with root at rank r are disjoint.
- There are at most $\lfloor \lg n \rfloor$ different ranks.
 - There are altogether n elements in S, that is, n nodes in F.

Increasing Sequence of Ranks

- The ranks of the nodes on a path from a leaf to a root of a tree in F form a strictly increasing sequence.
- When a *cFind* operation changes the parent of a node, the new parent has higher rank than the old parent of that node.
 - Note: the new parent was an ancestor of the previous parent.

A Function Growing Extremely Slowly

■ Function *H*:

$$\begin{cases}
H(0)=1 & 2 \\
H(i+1)=2^{H(i)} & 2
\end{cases}$$
that is: $H(k)=2$
 $k = 2$

Note:

H grows extremely fast:

$$H(4)=2^{16}=65536$$

 $H(5)=2^{65536}$

■ Function Log-star

lg*(*j*) is defined as the least *i* such that:

$$H(i) \ge j$$
 for $j > 0$

Log-star grows extremely slowly

$$\lim_{n\to\infty} \frac{\lg^*(n)}{\log^{(p)} n} = 0$$

p is any fixed nonnegative constant

For any x: $2^{16}+1 \le x \le 2^{65536}$, $\lg^*(x)=5$!

Grouping Nodes by Ranks

- Node $v \in s_i$ ($i \ge 0$) iff. $\lg * (1 + \text{rank of } v) = i$
 - which means that: if node v is in group i, then $r_v \le H(i)-1$, but not in group with smaller labels
- So,
 - Group 0: all nodes with rank 0
 - Group 1: all nodes with rank 1
 - Group 2: all nodes with rank 2 or 3
 - Group 3: all nodes with its rank in [4,15]
 - Group 4: all nodes with its rank in [16, 65535]
 - Group 5: all nodes with its rank in [65536, ???]

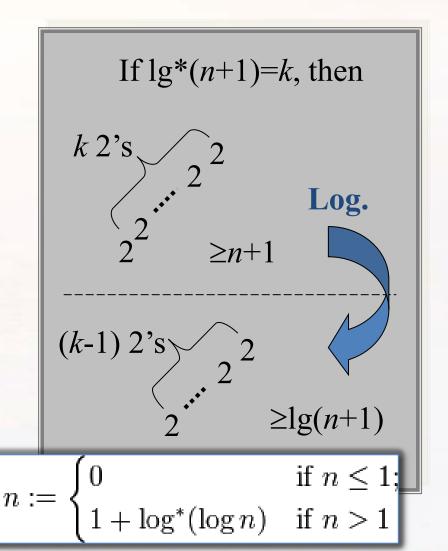
Group 5 exists only when n is at least 2^{65536} . What is that?

Very Few Groups

■ Node $v \in S_i$ ($i \ge 0$) iff.

$$\lg^*(1+\text{rank of }v)=i$$

- Upper bound of the number of distinct node groups is lg*(n+1)
 - The rank of any node in F is at most $\lfloor \lg n \rfloor$, so the largest group index is $\lg^*(1+\lfloor \lg n \rfloor) = \lg^*(\lceil \lg n + 1 \rceil) = \log^*(n+1) 1$



Amortized Cost of Union-Find

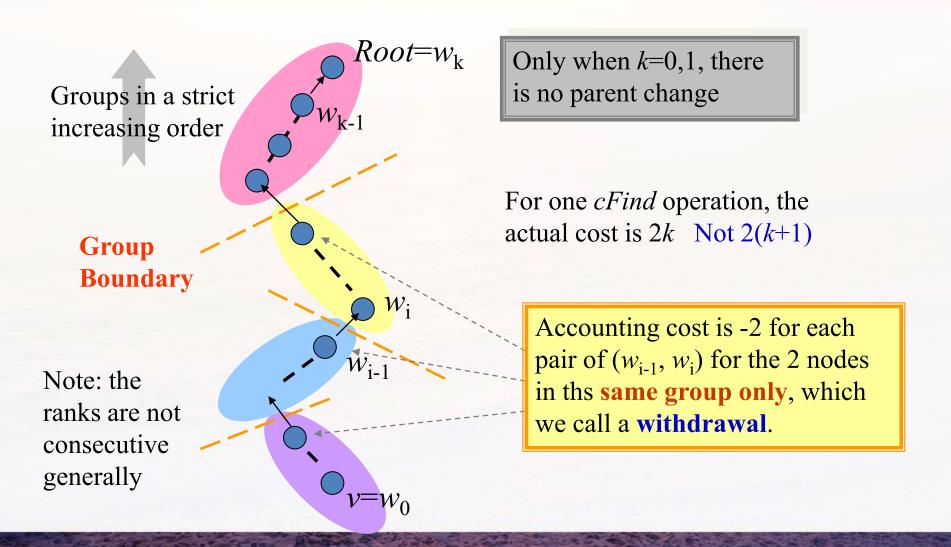
■ Amortized Equation Recalled

amortized cost

= actual cost + accounting cost

- The operations to be considered:
 - *n* makeSets
 - -m union & find (with at most n-1 unions)

One Execution of *cfind(W*₀)



Amortizing Scheme for WUnion-cFind

- makeSet
 - Accounting cost is $4\lg*(n+1)$
 - So, the amortized cost is $1+4\lg*(n+1)$
- wUnion
 - Accounting cost is 0
 - So the amortized cost is 1
- **c**Find
 - Accounting cost is describes as in the previous page.
 - Amortized cost $\leq 2k-2((k-1)-(\lg*(n+1)-1))=2\lg*(n+1)$ (Compare with the worst case cost of *cFind*, $2\lg n$)

Number of withdrawal

Validation of the Amortizing Scheme

- We must be assure that the sum of the accounting costs is never negative.
- The sum of the negative charges, incurred by cFind, does not exceed $4n\lg*(n+1)$
 - We prove this by showing that at most $2n\lg^*(n+1)$ withdrawals on nodes occur during all the executions of cFind.

Key Idea in the Derivation

- For any node, the number of withdrawal will be less than the number of different ranks in the group it belong to
 - When a *cFind* changes the parent of a node, the new parent is always has higher rank than the old parent.
 - Once a node is assigned a new parent in a higher group, no more negative amortized cost will incurred for it again.
- The number of different ranks is limited within a group.

Derivation

a loose upper bound of ranks in a group

■ The number of withdrawals for all $w \in S$ is:

$$\sum_{i=0}^{\lg*(n+1)-1} H(i) \text{ (number of nodes in group i)}$$

Note: number of nodes in group i is at most:

$$\sum_{r=H(i-1)}^{H(i)-1} \frac{n}{2^{r}} \le \frac{n}{2^{H(i-1)}} \sum_{j=0}^{\infty} \frac{1}{2^{j}} = \frac{2n}{2^{H(I-1)}} = \frac{2n}{H(i)}$$
So,
$$\sum_{i=0}^{\lg^*(n+1)-1} H(i) \frac{2n}{H(i)} = 2n \lg^*(n+1)$$

The Conclusion

- The number of link operations done by a *Union-Find* program implemented with *wUnion* and cFind, of length m on a set of n elements is in O((n+m)lg*(n)) in the worst case.
 - Note: since the sum of accounting cost is never negative, the actual cost is always not less than amortized cost. And, the upper bound of amortized cost is: $(n+m)(1+4\lg*(n+1))$

结论

When we use both union by rank and path compression, the worst-case running time is $O(m \cdot \alpha(n))$, where $\alpha(n)$ is a *very* slowly growing function. In any conceivable application of a disjoint-set data structure, $\alpha(n) \le 4$; thus, we can view the running time as linear in m in all practical situations.

Strictly speaking, however, it is superlinear.