ﬁﬁmﬂaﬁm - /1215
-FTHSFHM KRB IELEN

TC-17. 21

S Cpp—————

Part |
Union-Find

A H

YR EE TS 2 T 8l a5 /
% 75 .25 -
U “f#” HWE? i

QDH#UIE—/\?U% BTN FNZL?
QM—H—JW 1) I 7< = ;:'Fjj_/\7

UnionFind — —flREESEEY

RS ={5.5y,.. .5 | SNS=¢, ije {12,....k}, Bizj}

ESGREERUT
(BUE£) Make-Set(x): xIRNBTHEARCRIZESHNR, BIFER
A {x}

(4514) Union(xy): xy2EER MR, BRI IETESS. S,
EMRER . FESS VS BRS FEFRAIS HS,,

(E18) Find-Set(x): x2S, BIEEREIERFTEESHIIEET.

o) 7 3:

4 R85 A Hrepresentative?

W RBEE T RBIEESHNER 2 EN"

?

BRFTRFRA “well-defined” B ER B4 ?

(RIRICELEIFEANTIEFMNE "Fx" HURIIRYERRIS?
We care only that if we ask for the representative of a dynamic set

twice without modifying the set between the requests, we get the
same answer both times.

] 54

BATTERIAR—ANEE, T2
— AR EER, TG “Bal =
FEDT” REAEFA2EER?

Z[En;RMakeSet, miXRSZFHEIE (=) BIFFIBIRM,

RBEEESEAEEDZNES

CONNECTED-COMPONENTS (G)
for each vertex v € G.V

|
: 2 MAKE-SET(v)
[
ﬂ ﬁ @ 3 foreachedge (u.v) € G.E
4 if FIND-SET(u) # FIND-SET(v)
ﬂ _ 5 UNION (2, v)
|

SAME-COMPONENT (u, v)

| if FIND-SET(u) == FIND-SET(v)
2 return TRUE
3 else return FALSE

Edge processed Collection of disjoint se
s (a0 {0 @ e 0 @ W 00

(B.d) {a} {bd} {c} {e} i Agr R A Ud it
leg) {a} {bd} {c} {egl O thy i} U} LEE§1tEEEﬁ
(a2,c) {a,c} {B,d} fegt 1 R}y i} i} #Z:EHUH:IJ_'_E%
(Fo, i) {a,c} {b,al} fegd 4} {h,i} i} E—F]EE{_%\’@
(a.b) {ab,c.d} eg} i {hi}) ’)EE S
(e,) {ab.cad} {e, fe} {hi} it °
(B,c) {ab.cd} {e, fe} {#,i} it

Implementing by Linked-List

]] f B d | ¥ £ h £ b
- - - .

head - = w7 head
&4]

sail T sar

ﬂ 3 AEunion(g,e) AT /G

head

rail

) el S s
b4 R S, AN
P P T B b 7

UnionR{EXIREVRFAZIIER, AR, AHA?
XIHMFEARA?

SBAFIEEHFMERE, MIZREIERENIFHAKRE,
MmAEREREE "EE" !

BLE “weighted-union” , BIREABEIREME, RINHATTRERL
MR, (B R MIERISIKE a0 (S3RHRIE) FFIRLH:

O (m+nlgn)

BIESHYSEINESTE -
inTree 5 disjoint-set Forest

%
|

r: .f"-.I f
‘ék\ }P‘ Union(e,g) p‘/%‘\
1]

&,

&/

® @

FFEl ok

P SN TS S S e 4 TR R
N AN B Dl 1t S Al oy S 8

) /L7

disjoint-set forestH I 451 1% 5k
et R 5@iERITx, HS5HRESRE
Tok? XN Bt EET A BR?

T A BRI ?
Find(x) - SxHOREB XK.

IEHIPSE : Union by Rank

MAKE-SET (x) 1) 8 :
| xp=x e %:Ebﬁﬁwanki’]ﬂél Jo B
2 x.ramk = 0<7 i 3 i/jﬁ%“—x i, 7
UNION (X, ¥)
1 LINK(FIND-SET(x), I-rrnl::-,HFTiu]
7] 9
L[HE‘:.{.T._".'} , 25| n = BE %
) R R BUR R R,
if X . ranK > V.Fane ; _ :
) yp=x }‘ Eweighted-union& {1
3 oelsex.p=y AFFE? w4zuarse
- [Il X.rank == y.rank] % 7% rank?
5 y.rank = y.rank + |

1
a
p
SS
10
n

I]"[I"-'D
;m oL
Jj;-:ﬂ FIND
‘atwo B
.p -1:-
ass P] lrlEﬂ]
. B
" 1
i

m
e
thod
”
y 4
TAR
usl%\ 7

Part i
Amortized Analysis

M R p— n———

kLT

. INCREMENT(A)

IO S S

0 0000O0O0O00 0 2 whilei: < A.length and A[i] ==

1 00000001 1 3 Ali] = 0

2 0O000O0O0T10 3 4 i =1+ 1

3 00000011 4 T3 .

4 00000100 7 glﬁ ilf?]'!fgfh ﬁ;}fl[l]fgj

5 000O0O0T101 8 oo A

6 0O00O0O0T1T10 10

7 00000 1T 11 11

8 0O000T1O0OO00 15

9 0O00O0T1TO001 16

10 0O00O0T1TO0OT10 18

11 0O00O0TO 11 19

12 0O00O0TT1O0W0 22

13 0O00O0T1T 101 23

14 O000T1TT1T10 25

15 0000 1T 1 11 26

16 00010000 31

AHIRERITIA 2RI _EFR

Z TR E MO ETF 30, BPFATniKincrementAE .

o) @512
e, %

incrementi 1’5%’1#&/5)@1% IJI@» JX*HJ’JJE?'—
EIB1I, 41 TE3USliplh

increment /i 22) LIR?

T A N
["/‘ “—Z / i Iy
Y

RN ABRRERERZIRER, MR
XMREISBIMUNMREREES K.

Amortized Analysis: Aggregate /3%

1HE % S nRincrementEr {Eworst-case) &L R E

B Ali] (1=0,1,2,..k-1) 7 "B20R" BAEPRiFflip—IX,
LA, SHRIEREN:

—1 ncl

n
Z — < N —
> 5] 5

aaE: &RAERT, BIEEIMA00)
M TRincrementiEERYANEO0()

7] 17 :
XN AR “average case”?

Amortized Analysis: Accounting /5%

RIEEE fRn NincrementB{FROFSI. FEEITE AN | TIRERIRE
MR (RER—EARIER) AR 2 Ak,

RREFEY "1IEK” ATCERUTNFRA “accounting cost”
INER A Eaccounting costBE/EASLFRMUNBI LR, NHAIRIE
BERSNIREFANEMAATZ, SERRAMUNT A K Faccounting cost,

WhilefEERIMNYflip(line 6)/Iset (07 4 1) ¥{E, TowhilefBIRRAIMip(line 3)/9
reset (17 % 0) ¥4,
MJaccounting costfEEIN T : set: 2 ("FAITFEL") reset: 0 ("FROZ{T")

HIRz, iT#EeT 17 AUEEISRT "R &, RIHEASS
R (A= "Ex") ;. BRUNMEAESXRT IR TEERRYER2(E.

Amortized Analysis: Potential /5%

HEERERYGHFRE (B "BEe" . BHIT=RSE EEREIN SN
"B X AP (D), B—RERERH4E/F)BJamortized cost/I:

¢ci=c¢ +®(D;)=P(D;1) . EwmAMLE “Hie” THEZF
i EESEEF, BN OD)=F iR ERITEEIF 1 NED.. ©(D,)=0.
E R e R FH R IRAE P A A treset (20), W b,<b, -t +1

B EzCaTA0:
DD —PiD_)

& = Y (g +O(D)— (D))

=1 i=1

by —8 + 1) —b_y
| — .

¢i +®(D;) — ®(Dj-y1)

< +D+A-1)

2.

I 1A

— Zc_. + DD, — DDy .

);)T]/X’ R%‘ (D(DH) 2 (D(DU)
Amortized cost#t 7] VALE A 52 IR
R0 _E PR,

Ci

SR NMRERISEINT, N "Brg" 5 "FEEe"
HNWREERE, SMHMEEEHAEE?

ATETEFE, PLEZKunionnHFA
findf=link 9> 3 % &89 .

B cFind may be an expensive operation, in the
case that find(i) 1s executed and the node i has
great depth.

B However, such cFind can be executed only for
limited times, relative to other operations of
lower cost.

B So, amortized analysis applys.

Amortized Time Analysis

B Amortized equation:
amortized cost = actual cost + accounting cost

B Design goals for accounting cost

— In any legal sequence of operations, the sum of the
accounting costs 1s nonnegative.

— The amortized cost of each operation 1s fairly
regular, 1n spite of the wide fluctuate possible for
the actual cost of individual operations.

Go-Strength of wnm/onand cFind

B The number of link B What’s 1g*(n)?
operations done by a — Define the function H as
Union-Find program {* following:
implemented with .~
wUnion and cF incg’,/()/f { H(0)=1
length m on a set 'of n H(@{)=2""" for i>0
elements is in” — Then, Ig*(j) for j>1 is

O((n+m)lg*(n)) in the defined as:
worst case. Ig*(j)=min{ A[H(k)>/ }

Definitions with a dm/on-FfindProgram P

B Forest F: the forest constructed by the
sequence of union 1nstructions in P, assuming:

— wUnion 18 used;
— the finds 1n the P are 1gnored

M Height of a node v in any tree: the height of the
subtree rooted at v

B Rank of v: the height of vin I Note: ¢Find changes
= the height of a node,
but the rank for any
node 1s invariable.

Gonstraints on Ranks in F

B The upper bound of the number of nodes with rank r
. N
(¥>0) 1s -
2
— Remember that the height of the tree built by wUnion is at
most | lgn|, which means the subtree of height » has at least

27 nodes.

— The subtrees with root at rank » are disjoint.

B There are at most ngnJ different ranks.

— There are altogether n elements in S, that is, #» nodes 1n F.

|

B The ranks of the nodes on a path from a leaf to a
root of a tree 1n /' form a strictly increasing
sequence.

B When a cFind operation changes the parent of a
node, the new parent has higher rank than the
old parent of that node.

— Note: the new parent was an ancestor of the previous
parent.

| |

B Function Log-star

1g*(j) 1s defined as the least
i such that:

H(i)>j for j>0

B Function H:
H(0)=1
{H(z‘+1)=2H @
2
that 1s: H(k)=2

B [og-star grows
extremely slowly

Note: lim lg*(gl) =0
H grows extremely fast: == log ™ n
H(4)=216=65536 p 1s any fixed nonnegative

H(5)=265536 constant

For any x: 216+1<x<265536]g*(x)=5 !

B Node ves, (i20) iff. Ig*(1+rank of v)=i
— which means that: if node v 1s 1n group i, then

r, < H(i)-1, but not in group with smaller labels

H So,

— Group 0: all nodes with rank 0 Group 5 exists only when 7

— Group 1: all nodes with rank 1 - 'S @t 1east 260223 What is that?

— Group 2: all nodes with ra or 3

— Group 3: all nodes with 1ts rank in [4,15]

— Group 4: all nodes with 1ts rank in [16, 65535]

-(Group $3all nodes with its rank in [65536, ?27]
~

B Node vesS,; (i20) iff. If 1g*(n+1)=k, then

Ig*(1+rank of v)=i

k2’s)
B Upper bound of the number 2 L
2

of distinct node groups is 5 S
lg*(n+1)

— The rank of any node in F'is (k-1) 2’s 2
at most ngnJ, so the largest 2

5 >lg(n+1)

0 ifn <1
log*™ n = . |
1+ log*(logn) ifn>1

group index 1s Ig*(1+
LIgny=1g*(1gn+11) =
lg*(nt+1)-1

Amortized Cost of dm/on-Find

B Amortized Equation Recalled

B The operations to be considered:

— n makeSets

— m union & find (with at most n-1 unions)

One Execution of cFima i)

® Root=wy | Only when k=0, 1, there
Groups in a strict @, is no parent change
k-1

increasing order

\ For one cFind operation, the
Group . actual costis 2k Not 2(k+1)
N e
Boundary AR
/. i . .
o Accounting cost is -2 for each
. s Wi ™ | pair of (w._;, w.) for the 2 nodes
Note: the || in ths same group only, which
ranks ar::. not \. e we call a withdrawal.
consecutive

generally o

Amortizing Scheme for winion-cFind

B makeSet

— Accounting cost 1s 4lg*(n+1)

— So, the amortized cost 1s 1+41g*(n+1)
B wUnion

— Accounting cost is 0
— So the amortized cost 1s 1

B clFind

— Accounting cost is describes as 1n the previous page.
— Amortized cost < 2k-2((k-1)-(Ig*(n+1)-1))=21g*(n+1)
(Compare with the worst case cost of cFind, 2lgn)

Number of withdrawal

B We must be assure that the sum of the
accounting costs is never negative.

B The sum of the negative charges, incurred by
cFind, does not exceed 4nlg™(n+1)
— We prove this by showing that at most 2nlg*(n+1)

withdrawals on nodes occur during all the
executions of cFind.

B For any node, the number of withdrawal will be less
than the number of different ranks in the group 1t
belong to

— When a cFind changes the parent of a node, the new parent
1s always has higher rank than the old parent.

— Once a node 1s assigned a new parent 1n a higher group, no
more negative amortized cost will incurred for 1t again.

B The number of different ranks 1s limited within a
group.

a loose upper bound
_~~" of ranks in a group

B The number of Wlthdrawals for all weS 1s:

~
7~

~

lg*(nt)-1 \A//
E /H(z)(number of nodesin groupi)
et
Note:number of nodesin group 11s at most:
P by 2
S 27‘ 2H(z—1) ZH(I 1) H(l-)
So,

lg*(n+1)—1 2

ZH@)

=2nlg*(n+1)

i=0 l

The Gonclusion

B The number of link operations done by a Union-
Find program implemented with wUnion and
cFind, of length m on a set of n elements 1s 1n
O((n+m)lg*(n)) in the worst case.

— Note: since the sum of accounting cost 1s never
negative, the actual cost 1s always not less than

amortized cost. And, the upper bound of amortized
cost 1s: (n+m)(1+41g*(n+1))

2510

When we use both union by rank and path compression, the
worst-case running time 1s O(m-a(n)), where a(n) 1s a very
slowly growing function. In any conceivable application of a
disjoint-set data structure, a(n)<4; thus, we can view the
running time as linear in m in all practical situations.

Strictly speaking, however, it 1s superlinear.

	计算机问题求解 – 论题2-15� -用于动态等价关系的数据结构
	幻灯片编号 2
	幻灯片编号 3
	UnionFind – 一种抽象数据类型
	幻灯片编号 5
	幻灯片编号 6
	将无向图分解为连通分支的集合
	Implementing by Linked-List
	幻灯片编号 9
	更适合的实现结构：�inTree 与 disjoint-set Forest
	幻灯片编号 11
	控制树高度：Union by Rank
	降低结点深度：Path Compression
	幻灯片编号 14
	k 位二进计数器
	大代价操作执行次数的上限
	Amortized Analysis: Aggregate 方法
	Amortized Analysis: Accounting 方法
	Amortized Analysis: Potential 方法
	“双重改进”的Union-Find 的效率
	Analysis: the Basic Idea
	Amortized Time Analysis
	Co-Strength of wUnion and cFind
	Definitions with a Union-Find Program P
	Constraints on Ranks in F
	Increasing Sequence of Ranks
	A Function Growing Extremely Slowly
	Grouping Nodes by Ranks
	Very Few Groups
	Amortized Cost of Union-Find
	One Execution of cFind(w0)
	Amortizing Scheme for wUnion-cFind
	Validation of the Amortizing Scheme
	Key Idea in the Derivation
	Derivation
	The Conclusion
	结论

