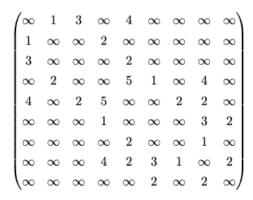
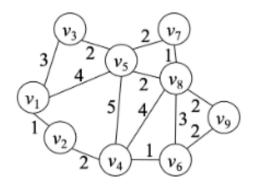


3-6 单源最短路

你能解释这些概念吗?

- 赋权图
 - 赋权函数、权
- 邻接矩阵
- 关联矩阵
- 邻接表



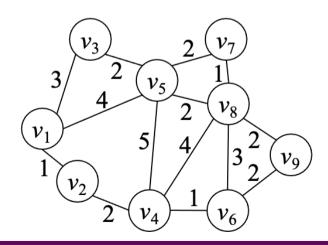


顶点	(邻点,边权) 列表
v_1	$\langle v_2, 1 \rangle, \langle v_3, 3 \rangle, \langle v_5, 4 \rangle$
v_2	$\langle v_1, 1 \rangle, \langle v_4, 2 \rangle$
v_3	$\langle v_1, 3 \rangle, \langle v_5, 2 \rangle$
v_4	$\langle v_2, 2 \rangle, \langle v_5, 5 \rangle, \langle v_6, 1 \rangle, \langle v_8, 4 \rangle$
v_5	$\langle v_1, 4 \rangle, \langle v_3, 2 \rangle, \langle v_4, 5 \rangle, \langle v_7, 2 \rangle, \langle v_8, 2 \rangle$
v_6	$\langle v_4, 1 \rangle, \langle v_8, 3 \rangle, \langle v_9, 2 \rangle$
v_7	$\langle v_5, 2 \rangle, \ \langle v_8, 1 \rangle$
v_8	$\langle v_4, 4 \rangle, \langle v_5, 2 \rangle, \langle v_6, 3 \rangle, \langle v_7, 1 \rangle, \langle v_9, 2 \rangle$
v_9	$\langle v_6, 2 \rangle, \langle v_8, 2 \rangle$

你能解释这些概念吗?

- (赋权)长度
- 最短路
- 距离

- 离心率
- 中心点
- 半径
- 中心
- 边缘点
- 直径



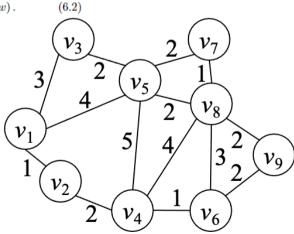
你能解释这些概念吗?

- (赋权) 长度
- 最短路
- 距离

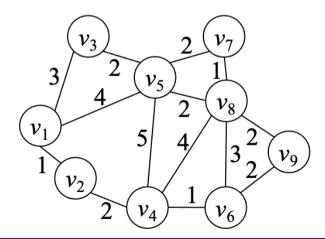
思考题 6.1 ($^{\Diamond}$) 对于连通赋权图 $G=\langle V,E,w\rangle$,距离函数 dist 满足三角不等式吗:

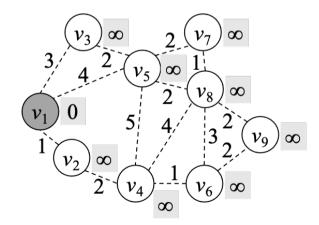
$$\forall u, v, w \in V, \ dist(u, v) + dist(v, w) \ge dist(u, w).$$

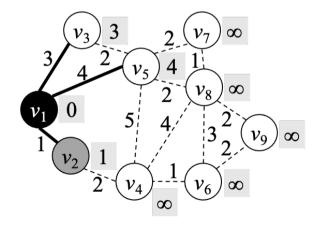
- 离心率
- 中心点
- 半径
- 中心
- 边缘点
- 直径

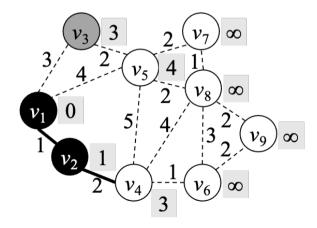


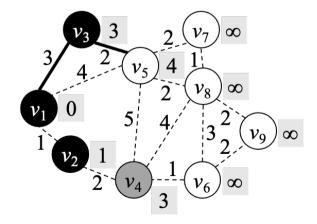
算法 6.1: 戴克斯特拉算法 输入: 赋权图 $G = \langle V, E, w \rangle$,顶点 u初值: 顶点集 V 中所有顶点的 d 初值为 ∞ ; 集合 Q 初值为 V1 $u.d \leftarrow 0$; 2 while $Q \neq \emptyset$ do 3 $v \leftarrow \mathop{\arg\min w.d}_{w \in Q}$ 4 $Q \leftarrow Q \setminus \{v\}$; 5 foreach $(v,w) \in E$ do 6 | if w.d > v.d + w((v,w)); then 7 $v.d \leftarrow v.d + w((v,w))$;

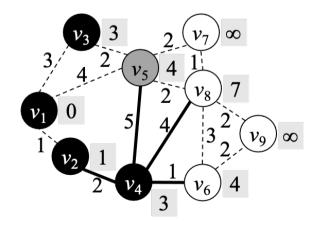


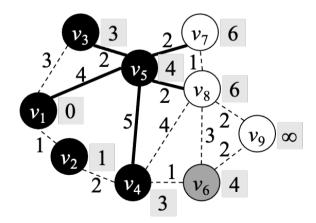


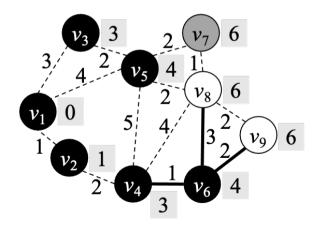


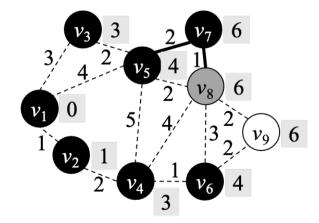


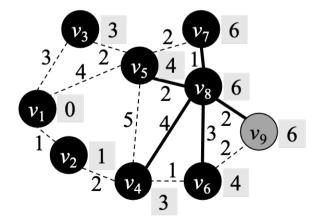


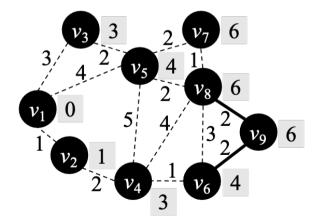












戴克斯特拉算法只适用于边权非负的赋权图。

思考题 6.2 对于含负权边的赋权图,戴克斯特拉算法运行结束时,和顶点 u 连通的顶点的 d 属性值未必为其和 u 间的距离,你能举例说明吗?

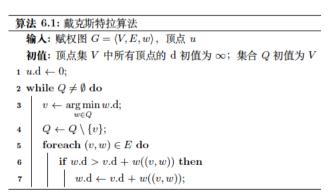
```
算法 6.1: 戴克斯特拉算法 输入: 赋权图 G = \langle V, E, w \rangle,顶点 u 初值: 顶点集 V 中所有顶点的 d 初值为 \infty; 集合 Q 初值为 V 1 u.d \leftarrow 0; 2 while Q \neq \emptyset do 3  v \leftarrow \underset{w \in Q}{\operatorname{arg\,min}} w.d; 4  Q \leftarrow Q \setminus \{v\}; 5 for each (v,w) \in E do 6  if w.d > v.d + w((v,w)); then 7  v.d \leftarrow v.d + w((v,w));
```

请证明下述定理

定理 6.1 戴克斯特拉算法每轮 while 循环条件判定前,已从集合 Q 中删除的每个顶点 v 满足 v.d = dist(u, v)。

■ 反证法

- v的含义?
- y的含义?
- x的含义?



$$y.d \le x.d + w((x, y))$$

$$= dist(u, y)$$

$$\le \underline{dist(u, v)}$$

$$\le \underline{v.d}$$

$$\le y.d.$$

思考题 6.4 负权边的存在对上述证明过程有何影响?

反证法

- v的含义?
- *y*的含义?
- x的含义?

算法 6.1: 戴克斯特拉算法

输入: 赋权图 $G = \langle V, E, w \rangle$, 顶点 u

初值: 顶点集 V 中所有顶点的 d 初值为 ∞ ; 集合 Q 初值为 V

- 1 $u.d \leftarrow 0$;
- 2 while $Q \neq \emptyset$ do

$$\begin{array}{c|c} \mathbf{3} & v \leftarrow \mathop{\arg\min}_{w \in Q} w.\mathrm{d}; \\ \\ \mathbf{4} & Q \leftarrow Q \setminus \{v\}; \\ \mathbf{5} & \mathbf{foreach} \ (v,w) \in E \ \mathbf{do} \end{array}$$

if
$$w.d > v.d + w((v, w))$$
 then

7
$$w.d \leftarrow v.d + w((v, w));$$

$$y.d \le x.d + w((x, y))$$

$$= dist(u, y)$$

$$\le dist(u, v)$$

$$\le v.d$$

$$\le y.d.$$

思考题 6.5 为什么戴克斯特拉算法从集合 Q 中删除顶点的顺序是按到顶点 u 的距离从小到大?

```
算法 6.1: 戴克斯特拉算法
输入: 赋权图 G = \langle V, E, w \rangle,顶点 u
初值: 顶点集 V 中所有顶点的 d 初值为 \infty; 集合 Q 初值为 V
1 u.d \leftarrow 0;
2 while Q \neq \emptyset do
3 v \leftarrow \underset{w \in Q}{\operatorname{arg\,min}\, w.d};
v \leftarrow \underset{w \in Q}{\operatorname{arg\,min}\, w.d};
foreach (v,w) \in E do
6 | if w.d > v.d + w((v,w)); then
7 | w.d \leftarrow v.d + w((v,w));
```

你能解释这个算法的时间复杂度吗?

■ 对于阶为n、边数为m的赋权图,戴克斯特拉算法的时间复杂度为 $O((n+m)\log n)$

```
算法 6.1: 戴克斯特拉算法
输入: 赋权图 G = \langle V, E, w \rangle,顶点 u
初值: 顶点集 V 中所有顶点的 d 初值为 \infty; 集合 Q 初值为 V
1 u.d \leftarrow 0;
2 while Q \neq \emptyset do
3 v \leftarrow \underset{w \in Q}{\arg \min w.d};
4 Q \leftarrow Q \setminus \{v\};
5 foreach (v,w) \in E do
6 if w.d > v.d + w((v,w)); then
7 v.d \leftarrow v.d + w((v,w));
```

你理解Relax了吗?

```
算法 6.1: 戴克斯特拉算法
  输入: 赋权图 G = \langle V, E, w \rangle, 顶点 u
  初值: 顶点集 V 中所有顶点的 d 初值为 \infty; 集合 Q 初值为 V
1 u.d \leftarrow 0;
2 while Q \neq \emptyset do
     v \leftarrow \arg\min w.d;
3
             w \in Q
     Q \leftarrow Q \setminus \{v\};
4
      for
each (v, w) \in E do
         if w.d > v.d + w((v, w)) then
             w.d \leftarrow v.d + w((v, w));
```

```
DIJKSTRA(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
   S = \emptyset
   Q = G.V
   while Q \neq \emptyset
        u = \text{EXTRACT-MIN}(Q)
        S = S \cup \{u\}
        for each vertex v \in G.Adj[u]
             Relax(u, v, w)
```

6

你理解这些性质了吗?

Triangle inequality (Lemma 24.10)

For any edge $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

Upper-bound property (Lemma 24.11)

We always have $\nu.d \ge \delta(s, \nu)$ for all vertices $\nu \in V$, and once $\nu.d$ achieves the value $\delta(s, \nu)$, it never changes.

No-path property (Corollary 24.12)

If there is no path from s to ν , then we always have $\nu d = \delta(s, \nu) = \infty$.

Convergence property (Lemma 24.14)

If $s \sim u \rightarrow v$ is a shortest path in G for some $u, v \in V$, and if $u.d = \delta(s, u)$ at any time prior to relaxing edge (u, v), then $v.d = \delta(s, v)$ at all times afterward.

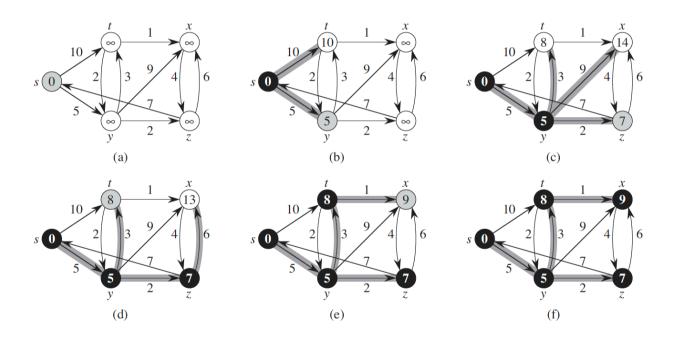
Path-relaxation property (Lemma 24.15)

If $p = \langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k \cdot d = \delta(s, v_k)$. This property holds regardless of any other relaxation steps that occur, even if they are intermixed with relaxations of the edges of p.

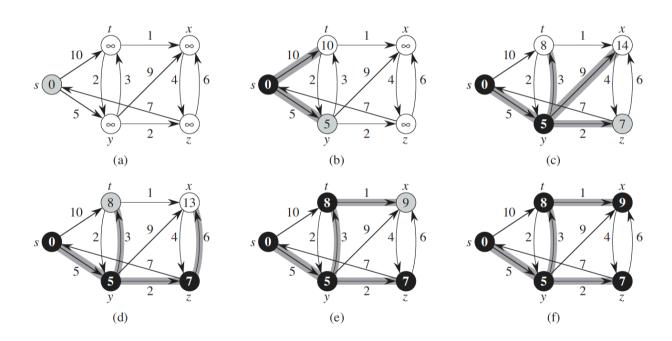
Predecessor-subgraph property (Lemma 24.17)

Once $\nu.d = \delta(s, \nu)$ for all $\nu \in V$, the predecessor subgraph is a shortest-paths tree rooted at s.

你理解这些性质了吗?



至少需要多少次Relax?



```
BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G.E

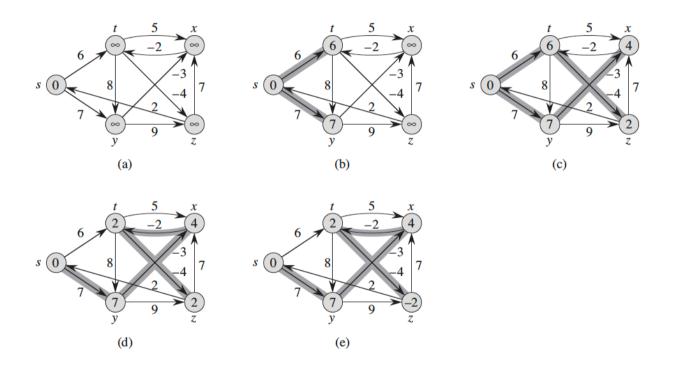
4 RELAX (u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```



■ 你能比较这两个算法Relax的顺序和次数吗?

```
BELLMAN-FORD (G, w, s)
                                               DIJKSTRA(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
                                               1 INITIALIZE-SINGLE-SOURCE (G, s)
   for i = 1 to |G.V| - 1
                                               S = \emptyset
3
       for each edge (u, v) \in G.E
                                               O = G.V
            Relax(u, v, w)
                                               4 while Q \neq \emptyset
   for each edge (u, v) \in G.E
                                                       u = \text{EXTRACT-MIN}(Q)
6
       if v.d > u.d + w(u, v)
                                                       S = S \cup \{u\}
                                                       for each vertex v \in G.Adj[u]
            return FALSE
                                                           Relax(u, v, w)
   return TRUE
```

你能比较这两个算法的循环不变式吗?(哪些顶点满足 ν.d = δ(s,ν)?)

```
Path-relaxation property (Lemma 24.15)

If p = \langle v_0, v_1, \dots, v_k \rangle is a shortest path from s = v_0 to v_k, and we relax the edges of p in the order (v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k), then v_k \cdot d = \delta(s, v_k). This property holds regardless of any other relaxation steps that occur, even if they are intermixed with relaxations of the edges of p.
```

```
BELLMAN-FORD (G, w, s)
                                                DIJKSTRA(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
                                                   INITIALIZE-SINGLE-SOURCE (G, s)
   for i = 1 to |G.V| - 1
                                                S = \emptyset
3
       for each edge (u, v) \in G.E
                                               3 \quad Q = G.V
            Relax(u, v, w)
                                                4 while Q \neq \emptyset
5
   for each edge (u, v) \in G.E
                                                       u = \text{EXTRACT-MIN}(Q)
6
       if v.d > u.d + w(u, v)
                                                       S = S \cup \{u\}
                                               6
                                                       for each vertex v \in G.Adj[u]
            return FALSE
                                                            Relax(u, v, w)
   return TRUE
```

- 什么是负权圈 (negative-weight cycle) ?
- 这个算法一定能发现图中的负权圈吗?

```
BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G.E

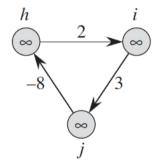
4 RELAX (u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```



- 什么是负权圈 (negative-weight cycle) ?
- 这个算法一定能发现图中的负权圈吗?
- 为什么一定能发现从s可达的负权圈?

```
BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G.E

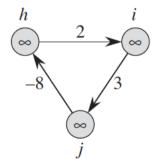
4 RELAX (u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```



- 什么是负权圈 (negative-weight cycle) ?
- 这个算法一定能发现图中的负权圈吗?
- 为什么一定能发现从s可达的负权圈?
- 你能改造这个算法, 让它也能发现从s不可达的负权圈吗?

```
BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G.E

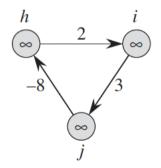
4 RELAX (u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```



你能解释这个算法的时间复杂度吗?

■ 对于阶为n、边数为m的赋权图,贝尔曼-福特算法的时间复杂度为O(nm)

```
BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G.E

4 RELAX (u, v, w)

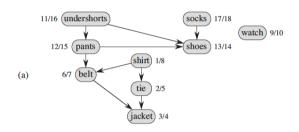
5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

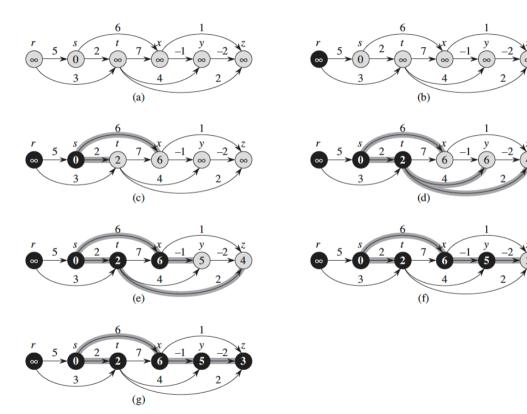
8 return TRUE
```

■ 什么是DAG? 什么是拓扑序?



DAG-SHORTEST-PATHS (G, w, s)

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE (G, s)
- 3 **for** each vertex u, taken in topologically sorted order
- 4 **for** each vertex $v \in G.Adj[u]$
- 5 RELAX(u, v, w)



■ 你能比较这两个算法Relax的顺序和次数吗?

```
DAG-SHORTEST-PATHS (G, w, s)
                                                          BELLMAN-FORD (G, w, s)
   topologically sort the vertices of G
                                                             INITIALIZE-SINGLE-SOURCE (G, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
                                                             for i = 1 to |G.V| - 1
   for each vertex u, taken in topologically sorted order
                                                                 for each edge (u, v) \in G.E
       for each vertex v \in G.Adj[u]
                                                                      Relax(u, v, w)
4
                                                             for each edge (u, v) \in G.E
           RELAX(u, v, w)
                                                                 if v.d > u.d + w(u, v)
                                                          6
                                                                      return FALSE
                                                             return TRUE
```

■ 你能比较这两个算法的循环不变式吗? (哪些顶点满足 $v.d = \delta(s, v)$?)

```
Path-relaxation property (Lemma 24.15)
```

If $p = \langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k \cdot d = \delta(s, v_k)$. This property holds regardless of any other relaxation steps that occur, even if they are intermixed with relaxations of the edges of p.

```
DAG-SHORTEST-PATHS (G, w, s)
                                                          BELLMAN-FORD (G, w, s)
   topologically sort the vertices of G
                                                              INITIALIZE-SINGLE-SOURCE (G, s)
                                                             for i = 1 to |G.V| - 1
   INITIALIZE-SINGLE-SOURCE (G, s)
                                                                 for each edge (u, v) \in G.E
3
   for each vertex u, taken in topologically sorted order
       for each vertex v \in G.Adj[u]
                                                                      Relax(u, v, w)
4
                                                             for each edge (u, v) \in G.E
            RELAX(u, v, w)
                                                                  if v.d > u.d + w(u, v)
                                                          6
                                                                      return FALSE
```

return TRUE

你能解释这个算法的时间复杂度吗?

■ 对于阶为n、边数为m的赋权图,Dag-Shortest-Paths算法的时间 复杂度为O(n+m)

```
DAG-SHORTEST-PATHS (G, w, s)

1 topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE (G, s)

3 for each vertex u, taken in topologically sorted order

4 for each vertex v \in G.Adj[u]

5 RELAX(u, v, w)
```

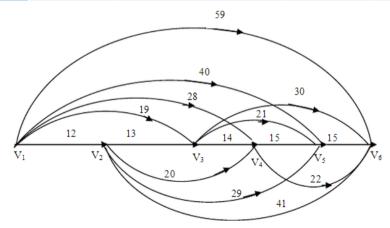
我们为什么不讨论single-pair shortest-path problem?

■ 如何更新设备最划算?

	2021	2022	2023	2024	2025
买入价	11	12	13	14	14
	1年后	2年后	3年后	4年后	5年后
卖出价	4	3	2	1	0
	第1年	第2年	第3年	第4年	第5年
保养费	5	6	8	11	18

■ 如何更新设备最划算?

	2021	2022	2023	2024	2025
买入价	11	12	13	14	14
	1年后	2年后	3年后	4年后	5年后
卖出价	4	3	2	1	0
	第1年	第2年	第3年	第4年	第5年
保养费	5	6	8	11	18



- 你能解释这些术语吗?
 - system of difference constraints
 - constraint graph

$$x_{1} - x_{2} \leq 0,$$

$$x_{1} - x_{5} \leq -1,$$

$$x_{2} - x_{5} \leq 1,$$

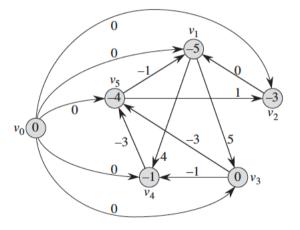
$$x_{3} - x_{1} \leq 5,$$

$$x_{4} - x_{1} \leq 4,$$

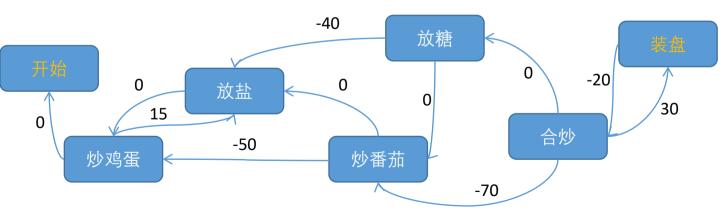
$$x_{4} - x_{3} \leq -1,$$

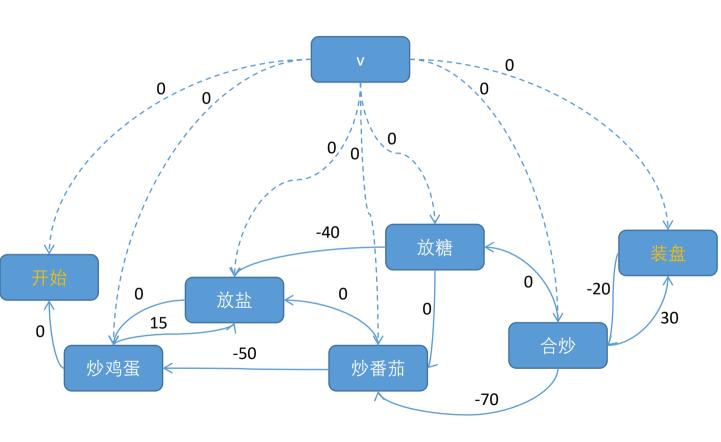
$$x_{5} - x_{3} \leq -3,$$

$$x_{5} - x_{4} \leq -3.$$



- 你会做番茄炒蛋吗?
 - 顺序: 先把鸡蛋炒熟, 再炒番茄, 再合起来炒
 - 要点:
 - 炒鸡蛋至少要50秒才能熟
 - 鸡蛋下锅的15秒内要放盐才能入味
 - 炒番茄至少要70秒才能出汁
 - 炒番茄时要放糖,但和之前放盐的时间要间隔至少40秒
 - 合起来炒至少要20秒才能混味,但不能超过30秒,否则就稀烂了
 -
- 如果一个新手要做番茄炒蛋,你能为他列出一份具体的时间表吗? (第几秒时做什么)





OT

 单源最短路问题有很多并行算法,例如Δ-stepping算法、Radius Stepping算法等,请调研至少2种算法(其中至多1种来自上述 例子),结合例子介绍算法的设计与分析,比较异同并分析优劣。