Number-Theoretic Algorithms

Hengfeng Wei
hfwei@nju.edu.cn

March 31 ~ April 6, 2017

Number-Theoretic Algorithms

(1) Modular Arithmetic
(2) Euclid's Algorithm
(3) Pairwise Relatively Prime

4 Chinese Remainder Theorem

Cancellation in modular arithmetic

(TC 31.4-2)

$$
\begin{gathered}
a d \equiv b d \quad(\bmod n) \nRightarrow a \equiv b \quad(\bmod n) \\
a d \equiv b d \quad(\bmod n), d \perp n \Longrightarrow a \equiv b \quad(\bmod n)
\end{gathered}
$$

$$
3 \cdot 2 \equiv 5 \cdot 2 \quad(\bmod 4) \quad 3 \not \equiv 5 \quad(\bmod 4)
$$

Changing the modulus

$$
\begin{gathered}
3 \cdot 2 \equiv 5 \cdot 2 \quad(\bmod 4) \quad 3 \not \equiv 5 \quad(\bmod 4) \quad 3 \equiv 5 \quad(\bmod 2) \\
a d \equiv b d \quad(\bmod n d) \Longleftrightarrow a \equiv b \quad(\bmod n) \quad(d \neq 0)
\end{gathered}
$$

$$
(a \bmod n) d=a d \bmod n d \quad(\text { distributive law })
$$

$$
a d \equiv b d \quad(\bmod n) \Longleftrightarrow a \equiv b \quad\left(\bmod \frac{n}{(d, n)}\right)
$$

Changing the modulus

$$
\begin{gathered}
n=n_{1} n_{2} \cdots n_{k} \\
a \equiv b \quad(\bmod n) \Longrightarrow a \equiv b \quad\left(\bmod n_{i}\right) \\
a \equiv b \quad(\bmod 100) \Longrightarrow a \equiv b \quad(\bmod 20) \Longrightarrow a \equiv b \quad(\bmod 5)
\end{gathered}
$$

Changing the modulus

$$
\begin{gathered}
n=n_{1} n_{2} \cdots n_{k} \\
a \equiv b \quad\left(\bmod n_{1}\right), a \equiv b \quad\left(\bmod n_{2}\right) \Longleftrightarrow a \equiv b \quad\left(\bmod \operatorname{lcm}\left(n_{1}, n_{2}\right)\right) \\
a \equiv b \quad\left(\bmod n_{1}\right), a \equiv b \quad\left(\bmod n_{2}\right) \Longleftrightarrow a \equiv b \quad\left(\bmod n_{1} n_{2}\right), \text { if } n_{1} \perp n_{2} \\
\forall 1 \leq i \leq k, a \equiv b \quad\left(\bmod n_{i}\right) \Longleftrightarrow a \equiv b \quad(\bmod n), \text { if } n_{i} \perp n_{j}
\end{gathered}
$$

Number-Theoretic Algorithms

(1) Modular Arithmetic

(2) Euclid's Algorithm
(3) Pairwise Relatively Prime

4 Chinese Remainder Theorem

Worst-case analysis of Euclid's algorithm

(TC 31.2-5)

1. If $a>b \geq 0, \operatorname{Euclid}(a, b)$ makes $\leq 1+\log _{\phi} b$ recursive calls.

Lamé's theorem: $a>b \geq 1, b<F_{k+1} \Longrightarrow r<k$.

$$
k=2+\log _{\phi} b
$$

$$
\begin{aligned}
& \text { To prove } b<F_{3+\log _{\phi} b} \\
& F_{k}=\frac{\phi^{k}-\hat{\phi^{k}}}{\sqrt{5}}>\frac{\phi^{k}-1}{\sqrt{5}}
\end{aligned}
$$

Worst-case analysis of Euclid's algorithm

(TC 31.2-5)
2. Improve this bound to $1+\log _{\phi}\left(\frac{b}{(a, b)}\right)$.

$$
\begin{aligned}
& \quad(a, b)=(a, b) \cdot\left(\frac{a}{(a, b)}, \frac{b}{(a, b)}\right) \\
& \begin{array}{ll}
(16,12) & (4,3) \\
=(12,4) & =(3,1) \\
=(4,0) & =(1,0) \\
=4 & =1 \\
\operatorname{Euclid}(a, b) \leftrightarrow \operatorname{Euclid}\left(\frac{a}{(a, b)},\right. & \left.\frac{b}{(a, b)}\right)
\end{array}
\end{aligned}
$$

Worst-case analysis of Euclid's algorithm

(TC 31.2-5)
2. Improve this bound to $1+\log _{\phi}\left(\frac{b}{(a, b)}\right)$.

$$
\operatorname{Euclid}(a, b) \leftrightarrow \operatorname{EucLid}\left(\frac{a}{(a, b)}, \frac{b}{(a, b)}\right)
$$

$\operatorname{Euclid}(b, a \bmod b) \stackrel{?}{\leftrightarrow} \operatorname{EUCLID}\left(\frac{b}{(a, b)}, \frac{a}{(a, b)} \bmod \frac{b}{(a, b)}\right)$

$$
\begin{gathered}
\operatorname{EUcLid}(b, a \bmod b) \leftrightarrow \operatorname{EUCLID}\left(\frac{b}{(a, b)}, \frac{a \bmod b}{(a, b)}\right) \\
\frac{a}{(a, b)} \bmod \frac{b}{(a, b)}=\frac{a \bmod b}{(a, b)}
\end{gathered}
$$

Worst-case analysis of Euclid's algorithm

(TC 31.2-5)
2. Improve this bound to $1+\log _{\phi}\left(\frac{b}{(a, b)}\right)$.

Lemma (Generalization of Lemma 31.10)
If $a>b \geq 1, d=(a, b)$ and $\operatorname{EucLid}(a, b)$ performs $k \geq 1$ recursive calls, then $a \geq d F_{k+2}$ and $b \geq d F_{k+1}$.

Average-case analysis of Euclid's algorithm

$$
T(m, 0)=0 ; \quad T(m, n)=1+T(n, m \bmod n) n \geq 1
$$

When m is chosen at random:

$$
T_{n}=\frac{1}{n} \sum_{0 \leq k<n} T(k, n)
$$

Assume that, for $0 \leq k<n,(n \bmod k)$ is "random":
$T_{n} \approx 1+\frac{1}{n}\left(T_{0}+T_{1}+\cdots+T_{n-1}\right)=1+\frac{1}{2}+\cdots+\frac{1}{n}=H_{n} \approx \ln n+O(1)$

Reference
"The Art of Computer Programming, Vol 2: Seminumerical Algorithms (Section 4.5.3)" by Donald E. Knuth, 3rd edition.

Number-Theoretic Algorithms

(1) Modular Arithmetic

(2) Euclid's Algorithm
(3) Pairwise Relatively Prime

Pairwise relatively prime

(TC 31.2-9)
$n_{1}, n_{2}, n_{3}, n_{4}$ are pairwise relatively prime \Longleftrightarrow
$\operatorname{gcd}\left(n_{1} n_{2}, n_{3} n_{4}\right)=\operatorname{gcd}\left(n_{1} n_{3}, n_{2} n_{4}\right)=1$

Pairwise relatively prime

(TC 31.2-9)
$n_{1}, n_{2}, \ldots, n_{k}$ are pairwise relatively prime \Longleftrightarrow a set of $\lceil\lg k\rceil$ pairs of numbers derived from the n_{i} are relatively prime.

$$
\begin{gathered}
\binom{k}{2}=\Theta\left(k^{2}\right) \quad(\text { complete graph }) \\
\operatorname{gcd}\left(\boxed{1_{L}}, \boxed{1_{R}}\right)=\operatorname{gcd}\left(\left(\boxed{2_{L}}, \boxed{2_{R}}\right)=\cdots=\operatorname{gcd}\left(\boxed{\boxed{l g} k\rceil_{L}}, \boxed{\left.\lceil\lg k\rceil_{R}\right)}\right)=1\right. \\
\quad k=2: \quad \operatorname{gcd}\left(n_{1}, n_{2}\right)=1 \\
k=3: \quad \operatorname{gcd}\left(n_{1}, n_{2} n_{3}\right)=\operatorname{gcd}\left(n_{2}, n_{3}\right)=1
\end{gathered}
$$

Pairwise relatively prime: divide-and-conquer

$$
\begin{gathered}
\left\{\begin{array}{l}
T(1)=0 \\
T(k)=T\left(\left\lceil\frac{k}{2}\right\rceil\right)+T\left(\left\lfloor\frac{k}{2}\right\rfloor\right)+1
\end{array} \Longrightarrow T(k)=k-1=\Theta(k)\right. \\
T_{k}=k-1:\left(n_{i}, n_{i+1} n_{i+2} \cdots n_{k}\right) \quad \forall 1 \leq i<k
\end{gathered}
$$

Pairwise relatively prime: smarter combination

$$
\left.\begin{array}{rlr}
\left(n_{1} n_{2}, n_{3} n_{4}\right)=1 \\
\left(n_{1}, n_{2}\right)=1,\left(n_{3}, n_{4}\right)=1 & \left(n_{1} n_{2}, n_{3} n_{4}\right)=1 \\
\left(n_{1} n_{3}, n_{2} n_{4}\right)=1
\end{array} ~ \begin{array}{l}
T(1)=0 \\
T(k)=T\left(\left\lceil\frac{k}{2}\right\rceil\right)+1
\end{array} \quad \Longrightarrow T(k)=\lceil\lg k\rceil\right] .
$$

Pairwise relatively prime: the dividing pattern

$$
k=7: \quad n_{0}, n_{1}, n_{2}, \ldots, n_{6}
$$

$$
T(k)=\lceil\lg k\rceil
$$

Can we do even better?

$$
T(k) \geq\lceil\lg k\rceil
$$

Prove by (strong) mathematical induction.

$$
\begin{aligned}
T(k) & \geq 1+T\left(\left\lceil\frac{k}{2}\right\rceil\right) \\
& \geq 1+\left\lceil\lg \left\lceil\frac{k}{2}\right\rceil\right\rceil \\
& =\lceil\lg k\rceil
\end{aligned}
$$

Biclique covering

Covering a complete graph with few complete bipartite subgraphs.

Biclique covering: rethinking the first divide-and-conquer

$$
T(k)=k-1
$$

edge-disjoint biclique partition

Reference for $T(k) \geq k-1$
"On the Addressing Problem for Loop Switching" by Graham and Pollak, 1971.

Reference for weighted biclique partition
"Covering a Graph by Complete Bipartite Graphs" by P. Erdős and L. Pyber, 1997.

Number-Theoretic Algorithms

(1) Modular Arithmetic

(2) Euclid's Algorithm
(3) Pairwise Relatively Prime

44 Chinese Remainder Theorem

Chinese Remainder Theorem (CRT)

Theorem (CRT)

$$
\begin{gathered}
n_{1}, \ldots, n_{k} ; \quad a_{1}, \ldots, a_{k} \\
n_{i} \perp n_{j} \quad i \neq j, \quad n=n_{1} n_{2} \cdots n_{k} \\
\exists!a(0 \leq a<n): a \equiv a_{i} \quad\left(\bmod n_{i}\right) . \\
a \leftrightarrow\left(a_{1}, a_{2}, \ldots, a_{k}\right)
\end{gathered}
$$

Proof for uniqueness.

$$
a \equiv a^{\prime} \quad\left(\bmod n_{i}\right) \Longrightarrow n \mid a-a^{\prime}
$$

History of CRT

＂物不知数＂

History of CRT

＂孙子算经＂

秦九韶＂数书九章＂大衍求一术

Proof of CRT (1)

Nonconstructive proof.

$$
\begin{aligned}
& f:[0, n) \rightarrow \prod_{1 \leq i \leq k}\left[0, a_{i}\right) \\
& f: a \mapsto\left(a \bmod n_{1}, \ldots, a \bmod n_{k}\right)
\end{aligned}
$$

- f is one-to-one.
- f is onto.

$$
\exists a: f(a)=\left(a_{1}, \ldots, a_{k}\right)
$$

Proof of CRT (2)

Constructive proof by induction.

$$
\begin{gather*}
a \equiv a_{1} \quad\left(\bmod n_{1}\right) \tag{1}\\
a \equiv a_{2} \quad\left(\bmod n_{2}\right) \tag{2}\\
(1) \Longrightarrow a=a_{1}+n_{1} y \\
x=a_{1}+n_{1} n_{1}^{-1}\left(a_{2}-a_{1}\right) \quad\left(\bmod n_{1} n_{2}\right)
\end{gather*}
$$

Proof of CRT (3)

Constructive proof by induction.

$$
\begin{gathered}
a \equiv a_{1} \quad\left(\bmod n_{1}\right) \\
a \equiv a_{2} \quad\left(\bmod n_{2}\right) \\
n_{1} \perp n_{2}
\end{gathered} \begin{gathered}
\Longrightarrow n_{1} n_{1}^{\prime}+n_{2} n_{2}^{\prime}=1 \\
x=a_{1} n_{1} n_{1}^{\prime}+a_{2} n_{2} n_{2}^{\prime} \quad\left(\bmod n_{1} n_{2}\right)
\end{gathered}
$$

Proof of CRT (4)

Constructive proof.

1. $x \equiv 1\left(\bmod n_{i}\right), \quad x \equiv 0\left(\bmod n_{j}\right)(i \neq j)$

$$
x=M_{i}\left(M_{i}^{-1} \bmod n_{i}\right) \Longrightarrow x=M_{i} M_{i}^{-1} \quad(\bmod n)
$$

2. $x \equiv a_{i}\left(\bmod n_{i}\right), \quad x \equiv 0\left(\bmod n_{j}\right)(i \neq j)$

$$
x=a_{i} M_{i} M_{i}^{-1} \quad(\bmod n)
$$

3. $a \equiv a_{i}\left(\bmod n_{i}\right), \forall 1 \leq i \leq k$

$$
a=\sum_{1 \leq i \leq k} a_{i} M_{i} M_{i}^{-1} \quad(\bmod n)
$$

Proof of CRT (5)

More efficient constructive proof.

```
Reference
"The Residue Number System" by Garner, 1959.
```

Reference
"The Art of Computer Programming, Vol 2: Seminumerical Algorithms (Section 4.3.2)" by Donald E. Knuth, 3rd edition.

Operations over CRT

$$
\begin{gathered}
a \leftrightarrow\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
a \pm b \leftrightarrow\left(a_{1} \pm b_{1}, a_{2} \pm b_{2}, \ldots, a_{n} \pm b_{n}\right) \\
a \times b \leftrightarrow\left(a_{1} \times b_{1}, a_{2} \times b_{2}, \ldots, a_{n} \times b_{n}\right)
\end{gathered}
$$

TC 31.5-3

$$
a \leftrightarrow\left(a_{1}, a_{2}, \ldots, a_{n}\right),(a, n)=1 \Longrightarrow a^{-1} \leftrightarrow\left(a_{1}^{-1}, a_{2}^{-1}, \ldots, a_{n}^{-1}\right)
$$

Proof.

$$
a^{-1} \equiv a_{i}^{-1} \quad\left(\bmod n_{i}\right) \Longleftarrow\left\{\begin{array}{l}
a \equiv a_{i} \quad\left(\bmod n_{i}\right) \\
(a, n)=1
\end{array}\right.
$$

The ϕ function

Theorem (The ϕ function)

$$
\begin{aligned}
\phi(p) & =p-1 \\
\phi\left(p^{k}\right) & =p^{k}-p^{k-1}
\end{aligned}
$$

$$
\phi(n)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) \quad\left(n=\prod_{i=1}^{r} p_{i}^{k_{i}}\right)
$$

"We shall not prove this formula here." - CLRS (Section 31.3) Let us prove this formula now.

$$
m \perp n \Longrightarrow \phi(m n)=\phi(m) \phi(n)
$$

The ϕ function

Theorem (The ϕ function)

$$
m \perp n \Longrightarrow \phi(m n)=\phi(m) \phi(n)
$$

Proof.

$$
\begin{gathered}
U_{m n}=\{a \bmod m n,(a, m n)=1\} \\
U_{m}=\{b \bmod m,(b, m)=1\} \quad U_{n}=\{c \bmod n,(c, n)=1\} \\
f: U_{m n} \rightarrow U_{m} \times U_{n} \\
f(a \bmod m n)=(a \bmod m, a \bmod n) .
\end{gathered}
$$

Secret sharing using the CRT

Definition (($k, n)$-threshold secret sharing scheme)
$(3,3)$-secret sharing:

Reference

"How to Share a Secret" by Maurice Mignotte, 1982.

Secret sharing using the CRT

1. Choose m_{i} :

$$
m_{1}<m_{2}<\cdots<m_{n}, \quad m_{i} \perp m_{j}, \quad \prod_{i=n-k+2}^{n} m_{i}<\prod_{i=1}^{k} m_{i}
$$

2. Choose the secret S :

$$
\prod_{=n-k+2}^{n} m_{i}<S<\prod_{i=1}^{k} m_{i}
$$

3. Compute the shares:

$$
s_{i}=S \bmod m_{i}
$$

Solving simultaneous congruences

(TC 31.5-2)

$$
\begin{cases}x \equiv 1 & (\bmod 9) \\ x \equiv 2 & (\bmod 8) \\ x \equiv 3 & (\bmod 7)\end{cases}
$$

$x \equiv 10 \quad(\bmod 504)$

Solving simultannous congruences

CRT with large modulus

$$
19 x \equiv 556 \quad(\bmod 1155)
$$

$$
\begin{cases}19 x \equiv 556 & (\bmod 3) \\ 19 x \equiv 556 & (\bmod 5) \\ 19 x \equiv 556 & (\bmod 7) \\ 19 x \equiv 556 & (\bmod 11)\end{cases}
$$

$$
\begin{cases}x \equiv 1 & (\bmod 3) \\ x \equiv 4 & (\bmod 5) \\ x \equiv 2 & (\bmod 7) \\ x \equiv 9 & (\bmod 11)\end{cases}
$$

Solving simultaneous congruences

CRT with non-pairwisely co-prime moduli

$$
\left\{\begin{array}{l}
x \equiv 3 \quad(\bmod 8) \\
x \equiv 11 \quad(\bmod 20) \\
x \equiv 1 \quad(\bmod 15)
\end{array}\right.
$$

$$
\begin{aligned}
& \left\{\begin{array}{lll}
x \equiv 3 & \left(\bmod 2^{3}\right)
\end{array}\right.
\end{aligned}\left\{\begin{array}{ll}
x \equiv 3 & \left(\bmod 2^{2}\right) \\
x \equiv 1 & (\bmod 5)
\end{array}\right]\left\{\begin{array}{lll}
x \equiv 1 & (\bmod 3) \\
x \equiv 1 & (\bmod 5)
\end{array}\right\}
$$

Solving simultaneous congruences

Theorem (CRT with non-pairwisely coprime moduli)

$$
\begin{gathered}
a_{i} \equiv a_{j} \quad\left(\bmod \left(n_{i}, n_{j}\right)\right) \\
0 \leq a<\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{k}\right)
\end{gathered}
$$

Simultaneous incongruences

$$
\exists ? a, \forall 1 \leq i \leq k: a \not \equiv a_{i} \quad\left(\bmod n_{i}\right)
$$

NP-complete

