
动态规划

课程研讨

 TC第15章

计算机问题求解 – 论题2-13

问题0：dynamic programming的基本概念

 什么样的问题可以使用dynamic programming来求解？
它高效的根本原因是什么？付出了什么代价？

 你理解dynamic programming的四个步骤了吗？
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

 广义上决定dynamic programming运行时间的要素是哪
两点？

 top-down with memorization和bottom-up method哪个更
快？

2

问题1：Keys with Different Frequencies

wing
(0.050)

ring
(0.075)

the
(0.150)

cabbage
(0.025)

has
(0.025)

said
(0.075)

king
(0.050)

pig
(0.025)

of
(0.125)

thing
(0.075)

time
(0.050)

come
(0.050)

and
(0.150)

walrus
(0.025)

talk
(0.050)

A binary search tree perfectly balanced
Since the keys with
largest frequencies have
largest depth, this tree is
not optimal.

∑
=

=
n

i
iicpTA

1
)(Average: 3.25

Improved for a Better Average

wing
(0.050)

ring
(0.075)

the
(0.150)

cabbage
(0.025)

has
(0.025)

said
(0.075)

king
(0.050)

pig
(0.025)

of
(0.125)

thing
(0.075)

time
(0.050)

come
(0.050)

and
(0.150)

walrus
(0.025)

talk
(0.050)

∑
=

=
n

i
iicpTA

1
)(= 2.915

矩阵连乘的问题
需要完成的任务:

求乘积: A1×A2×…×An-1×An
Ai 是二维矩阵，一般不是方阵，大小符合乘法规定的要

求。

为什么会成为问题:
矩阵乘法满足结合律，因此我们可以任意指
定运算顺序；

而不同的计算顺序代价差别很大。

优化问题: 什么样的次序计算代价最小?

Plan of Optimal Binary Tree

Kk

K1,…Kk -1 Kk +1,…Kn

For each selected root Kk ,
the left and right subtrees
are optimized.

The problem is decomposes
by the choices of the root.
Minimizing over all choices

The subproblems can be
identified similarly as for
matrix multOrder

Subproblems as left and right subtrees

Problem Rephrased
 Subproblem identification
The keys are in sorted order.
Each subproblem can be identified as a pair of

index (low, high)
 Expected solution of the subproblem
 For each key Ki, a weight pi is associated.

Note: pi is the probability that the key is searched for.
The subproblem (low, high) is to find the binary

search tree with minimum weighted retrieval cost.

Minimum Weighted Retrieval Cost
 A(low, high, r) is the minimum weighted retrieval

cost for subproblem (low, high) when Kr is chosen
as the root of its binary search tree.

 A(low, high) is the minimum weighted retrieval
cost for subproblem (low, high) over all choices of
the root key.

 p(low, high), equal to plow+plow+1+…+phigh, is the
weight of the subproblem (low, high).
Note: p(low, high) is the probability that the key searched for is in this interval .

Integrating Solutions of Subproblem
 Weighted retrieval cost of a subtree
 Let T is a particular tree containing Klow, …, Khigh, the

weighted retrieval cost of T is W, with T being a whole
tree. Then, as a subtree with the root at level 1, the
weighted retrieval cost of T will be: W+p(low, high)

 So, the recursive relations:
 A(low, high, r)

= pr+p(low, r-1)+A(low, r-1)+p(r+1, high)+A(r+1, high)
= p(low, high)+A(low, r-1)+A(r+1, high)

 A(low, high) = min{A(low, high, r) | low≤r≤high}

Avoiding Repeated Work by Storing
Array cost: cost[low][high] gives the

minimum weighted search cost of
subproblem (low,high).

Array root: root[low][high] gives the best
choice of root for subproblem (low,high)

 The cost[low][high] depends upon
subproblems with higher first index(row
number) and lower second index(column
number)

Computation of the Array cost
high

low0

0
0

0

0

0 1 2 n

0

0

pn

p3

p2

p11

2

n+1

cost[low][high]

bestChoice(prob, cost, root, low, high)
if (high<low)

bestCost=0;
bestRoot=-1;

else
bestCost=∞;

for (r=low; r≤high; r++)
rCost=p(low,high)+cost[low][r-1]+cost[r+1][high];
if (rCost<bestCost)

bestCost=rCost;
bestRoot=r;

cost[low][high]=bestCost;
root[low][high]=bestRoot;

return

Optimal BST: DP Algorithm

optimalBST(prob,n,cost,root)
for (low=n+1; low≥1; low--)

for (high=low-1; high≤n; high++)
bestChoice(prob,cost,root,low,high)

return cost

in Θ(n3)

问题2：dynamic programming的实例
 你能说明求解rod cutting的四个步骤吗？

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

13

问题2：Separating Sequence of Words
 Word-length w1, w2, …, wn and line-width: W
 Basic constraint: if wi, wi+1, …, wj are in one line,

then wi+wi+1+ …+wj≤W
 Penalty for one line: some function of X. X is:
 0 for the last line in a paragraph, and
 W –(wi+wi+1+ …+wj) for other lines

 The problem
 how to separate a sequence of words(forming a

paragraph) into lines, making the penalty of the
paragraph, which is the sum of the penalties of individual
lines, minimized.

Solution by Greedy Strategy

i word

1 Those
2 who
3 cannot
4 remember
5 the
6 past
7 are
8 condemned
9 to
10 repeat
11 it.

w

6
4
7
9
4
5
4
10
3
7
4

W is 17, and penalty is X3

Solution by greedy strategy
words (1,2,3) (4,5) (6,7) (8,9) (10,11)
X 0 4 8 4 0

penalty 0 64 512 64 0
Total penalty is 640

An improved solution

words (1,2) (3,4) (5,6,7) (8,9) (10,11)
X 7 1 4 4 0

penalty 343 1 64 64 0
Total penalty is 472

Problem Decomposition
 Representation of subproblem: a pair of indexes (i,j),

breaking words i through j into lines with minimum penalty.
 Two kinds of subproblem
 (k, n): the penalty of the last line is 0
 all other subproblems

 For some k, the combination of the optimal solution for (1,k)
and (k+1,n) gives an optimal solution for (1,n).

 Subproblem graph
 About n2 vertices
 Each vertex (i,j) has an edge to about j –i other vertices,

so, the number of edges is in Θ(n3)

Simpler Identification of subproblem
 If a subproblem concludes the paragraph,

then (k,n) can be simplified as (k). There are
about k subproblems like this.

 Can we eliminate the use of (i,j) with j<n?
 Put the first k words in the first line(with the

basic constraint satisfied), the subproblem to be
solved is (k+1,n)

Optimizing the solution over all k’s. (k is at most
W/2)

In DP
version,
“Storing”
inserted

Breaking Sequence into lines

lineBreak(w,W,i,n,L)
if (wi+ wi+1+…+ wn ≤W)

<Put all words on line L, set penalty to 0>
else

for (k=1; wi+…+wi+k-1≤W; k++)
X=W-(wi+…+wi+k-1);
kPenalty=lineCost(X)+lineBreak(w,W, i+k, n, L+1)
<Set penalty always to the minimum kPenalty>
<Updating kmin, which records the k that produced

the minimum penalty>
<Put words i through i+kmin-1 on line L>

return penalty

In DP version
this is replaced
by “Recursion
or Retrieve”

Analysis of lineBreak
 Since each subproblem is identified by only one

integer k, for (k,n), the number of vertex in the
subproblem is at most n.

 So, in DP version, the recursion is executed at
most n times.

 The loop is executed at most W/2 times.
 So, the running time is in Θ(Wn). In fact, W, the

line width, is usually a constant. So, Θ(n).
 The extra space for the dictionary is in Θ(n).

 你能说明求解longest common subsequence的四个步骤吗？
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

25

问题3：Longest Common Subsequence

 你能说明求解longest common subsequence的四个步骤吗？
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

26

问题3：Longest Common Subsequence

 你能说明求解longest palindrome subsequence的四个步骤
吗？

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

27

问题4：Longest palindrome subsequence

 你能说明求解longest palindrome subsequence的四个步骤
吗？

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

28

问题4：Longest palindrome subsequence

 你能说明求解edit distance的四个步骤吗？
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

29

问题5：Edit distance

 你能说明求解edit distance的四个步骤吗？
1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

30

问题5：Edit distance

问题6：Subset Sum
Given a set A={s1,s2,..., sn}, where si (for

i=1,2,…, n) is a natural number, and a
natural number S, determine whether there is
a subset of A totaling exactly S. Design a
dynamic programming algorithm for solving
the problem.

31

Decomposition the Problem
 Suppose subset Ai∈A is a solution of the

problem and sj∈Ai, then we have
∑(Ai – {sj}) = S – sj

 Thus, the problem can be divided into
several stages, in each of which one element
is found.

 States: all the possible values of subset sum
in each stages.

32

Basic Idea
Using a two-dimension boolean table T, in

which T[i, j]=true if and only if there is a
subset of the first i items of A totaling
exactly j.

 Initialization
 For each elements in T[n+1][S], set as false

Main loop to calculate each value

33

Main loop
for (i = 0; i <= n +1; i ++)

if (A[i] == S) return true;
else if (A[i] < S) T[i, A[i]] = true;
for (j = 0; j <= S + 1; j ++)

if (T[i -1, j])
{
T[i, j] = true;
if ((T[i, j] + A[i]) == S) return true;
else if ((t = (T[i, j] + A[i])) < S) T[i, t] = true;

}
return false;

34

Time O(nS) Space O(nS)

 unweighted longest simple path为什么不具有最优子结构？

 unweighted shortest simple path为什么不存在这个问题？

35

问题7：dynamic programming的实例 (续)

贪心算法

课程研讨

 TC第16.1-16.3节、第17章

计算机问题求解 – 论题2-14

问题1：greedy algorithms (续)

37

问题1：greedy algorithms (续)

38

Scheduling Activities into Rooms
 Instance: a set of n classes, each with start

time si and finishing time fi

 Problem: find the minimum number of
classrooms required to hold all classes

39

Depth of the Graph

40

A (bad) Room Scheduling Algorithm
 First attempt:
 Sort activities by finish time (after all we did this

for the previous scheduling problem).
 Start with i = 1. Then repeatedly choose next

activity and assign to classroom i; next
classroom is i = i + 1 mod d

How do we prove this is correct?
This cannot be done. Beware of bad examples!
This “solution” works for the previous slide but

in general it fails!
41

A Room Scheduling Algorithm
 We sort the activities by start time.
We still require the depth computation: the

minimum number of rooms needed is d. We use
d labels to name the rooms.

Assuming the activities have been sorted with
respect to start time we designate the ith activity
as ai.

 Pseudo-code:

For j = 1 to n
For each ai that precedes aj and overlaps it

Exclude the label of ai from the set of all labels
Endfor

If there is any label in the set of d labels that has not
been excluded then

Assign a non-excluded label to aj
Else Leave aj unlabeled.
Endif

Endfor42

Proof for the Room Scheduling
Algorithm (1)
 The following claims prove the success of

this greedy algorithm:
No activity goes unlabeled.
The “ELSE statement” will never execute.
Consider aj and assume there are k activities

prior to aj in the sorted order that overlap aj.
These k+1 activities (aj included) form a set that

must have a depth < d at the start time of aj.
 So, k+1 < d implies k < d -1 implies that at the

start time of aj there is a free label (i.e. a free
room).

43

Proof for the Room Scheduling
Algorithm (2)
 Also, no two overlapping activities can get the same

label.
 Suppose ai and aj overlap.

 Assume WLOG that ai precedes aj in the sorted
order.
 Then when aj is considered by the algorithm, the label

for ai will be excluded and it cannot be assigned to aj.
 Notice how the proof has made use of the three main

components of this greedy algorithm: the computation of
the depth, the sorting, and the excluding operation.

 If you had a proof that avoided any of these
components then something would be amiss: either
the algorithm is suspect or the proof is wrong…

44

Scheduling to Minimize Lateness
 Instance: a set of n activities, each with start

time si, deadline di and a duration ti.
 Problem: we plan to satisfy each request, but

we are allowed to let certain requests run late,
and the optimization goal is to schedule all
requests, using non-overlapping intervals, so as
to minimize the maximum lateness.
 We say a request i is late if it misses the deadline,

and the lateness of such a request i is defined to be
li=f(i)-di.

 The goal: minimize L=maxi li.

Greedy Strategies
 Choosing the smallest ti

 Choosing the smallest (di-ti)
 Choosing the smallest di

45

Greedy Scheduling Algorithm

46

 Sort task activities by deadline.
 Let time stamp Q = 0

 Repeatedly assign to task i = 1..n
 s(i) = Q
 Q = Q + ti

 f(i) = Q
 Note that the ti are used in the Q computations

but not in the determination of job order. (!)
 How do we prove this greedy schedule gives an

optimal solution?

Proof of the Correctness
 There is an optimal schedule with no idle

time.
All schedules with no inversions and no idle

time have the same maximum lateness.
 Inversion: if a job i with deadline di is scheduled

before another job j with deadline dj < di.
 There is an optimal schedule that has no

inversions and no idle time.

47

	计算机问题求解 – 论题2-13
	问题0：dynamic programming的基本概念
	问题1：Keys with Different Frequencies
	Improved for a Better Average
	矩阵连乘的问题
	Plan of Optimal Binary Tree
	Problem Rephrased
	Minimum Weighted Retrieval Cost
	Integrating Solutions of Subproblem
	Avoiding Repeated Work by Storing
	Computation of the Array cost
	Optimal BST: DP Algorithm
	问题2：dynamic programming的实例
	问题2：Separating Sequence of Words
	Solution by Greedy Strategy
	Problem Decomposition
	Simpler Identification of subproblem
	Breaking Sequence into lines
	Analysis of lineBreak
	问题3：Longest Common Subsequence
	问题3：Longest Common Subsequence
	问题4：Longest palindrome subsequence
	问题4：Longest palindrome subsequence
	问题5：Edit distance
	问题5：Edit distance
	问题6：Subset Sum
	Decomposition the Problem
	Basic Idea
	Main loop
	问题7：dynamic programming的实例 (续)
	计算机问题求解 – 论题2-14
	问题1：greedy algorithms (续)
	问题1：greedy algorithms (续)
	Scheduling Activities into Rooms
	Depth of the Graph
	A (bad) Room Scheduling Algorithm
	A Room Scheduling Algorithm
	Proof for the Room Scheduling Algorithm (1)
	Proof for the Room Scheduling Algorithm (2)
	Scheduling to Minimize Lateness
	Greedy Scheduling Algorithm
	Proof of the Correctness

