Red-Black Trees

A little history

- 1962: The idea of balancing a search tree is due to Adel'son-Velskii and Landis.
- 1970: Hopcroft introduced 2-3 trees. (B-tree is a generalization of it)
- 1972: Bayer invented Red-black trees.
- 1978: Guibas and Sedgewick introduced the red/black convention.

Red-Black Properties

- The *red-black properties*:
 - 1. Every node is either red or black
 - 2. The root is always black
 - 3. Every leaf (NULL pointer) is black
 - Note: this means every "real" node has 2 children
 - 4. If a node is red, both children are black
 - Note: can't have 2 consecutive reds on a path
 - 5. Every path from node to descendent leaf contains the same number of black nodes

Black-Height

- *black-height:* # black nodes on path to leaf
- What is the minimum black-height of a node with height h?
- A: a height-*h* node has black-height $\geq h/2$
- Theorem: A red-black tree with *n* internal nodes has height $h \le 2 \lg(n+1)$
 - Proved by induction

RB Trees: Proving Height Bound

- Prove: *n*-node RB tree has height $h \le 2 \lg(n+1)$
- Claim: A subtree rooted at a node x contains at least 2^{bh(x)} - 1 internal nodes
 - Proof by induction on height h
 - Base step: x has height 0 (i.e., NULL leaf node)
 What is bh(x)?

RB Trees: Proving Height Bound

- Prove: *n*-node RB tree has height $h \le 2 \lg(n+1)$
- Claim: A subtree rooted at a node *x* contains at least 2^{bh(x)} - 1 internal nodes
 - Proof by induction on height h
 - Base step: x has height 0 (i.e., NULL leaf node)
 What is bh(x)?
 - A: 0
 - So...subtree contains $2^{bh(x)}$ 1
 - $= 2^0 1$
 - = 0 internal nodes (TRUE)

RB Trees: Proving Height Bound

- Inductive proof that subtree at node *x* contains at least 2^{bh(x)} - 1 internal nodes
 - Inductive step: x has positive height and 2 children
 - Each child has black-height of bh(x) or bh(x)-1 (*Why?*)
 - The height of a child = (height of x) 1
 - So the subtrees rooted at each child contain at least $2^{bh(x)-1} 1$ internal nodes
 - Thus subtree at x contains $(2^{bh(x)-1} - 1) + (2^{bh(x)-1} - 1) + 1$ $= 2 \cdot 2^{bh(x)-1} - 1 = 2^{bh(x)} - 1$ nodes

Proving Height Bound

- Thus at the root of the red-black tree:
 - $n \ge 2^{bh(root)} 1$ $n \ge 2^{h/2} 1$ $\lg(n+1) \ge h/2$ $h \le 2 \lg(n+1)$

Thus $h = O(\lg n)$

RB Trees: Worst-Case Time

- So we've proved that a red-black tree has O(lg *n*) height
- Corollary: These operations take O(lg *n*) time:
 - Minimum(), Maximum()
 - Successor(), Predecessor()
 - Search()
- Insert() and Delete():
 - Will also take O(lg *n*) time
 - But will need special care since they modify tree

Red-Black Trees: An Example

Red-black properties:

• Color this tree:

- 1. Every node is either red or black
- 2. The root is always black
- 3. Every leaf (NULL pointer) is black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

5

• Insert 8

• Where does it go?

Red-black properties:

- 1. Every node is either red or black
- 2. The root is always black
- 3. Every leaf (NULL pointer) is black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

5

- Insert 8
 - Where does it go?
 What color should it be?

Red-black properties:

- 1. Every node is either red or black
- 2. The root is always black
- 3. Every leaf (NULL pointer) is black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

9

5

- Insert 8
 - Where does it go?
 What color should it be?

Red-black properties:

- 1. Every node is either red or black
- 2. The root is always black
- 3. Every leaf (NULL pointer) is black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

9

5

• Insert 11

• Where does it go?

Red-black properties:

- 1. Every node is either red or black
- 2. The root is always black
- 3. Every leaf (NULL pointer) is black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

9

5

• Insert 11

Where does it go?What color?

Red-black properties:

- 1. Every node is either red or black
- 2. The root is always black
- 3. Every leaf (NULL pointer) is black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

9

5

- Insert 11
 - Where does it go?
 - What color?

• Can't be red! (#4)

Red-black properties:

- 1. Every node is either red or black
- 2. The root is always black
- 3. Every leaf (NULL pointer) is black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

9

5

- Insert 11
 - Where does it go?
 - What color?
 - Can't be red! (#4)
 - Can't be black! (#5)

Red-black properties:

- 1. Every node is either red or black
- 2. The root is always black
- 3. Every leaf (NULL pointer) is black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

9

5

- Insert 11
 - Where does it go?
 - What color?
 - Solution: recolor the tree

Red-black properties:

- 1. Every node is either red or black
- 2. The root is always black
- 3. Every leaf (NULL pointer) is black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

9

5

• Insert 10

• Where does it go?

Red-black properties:

- 1. Every node is either red or black
- 2. The root is always black
- 3. Every leaf (NULL pointer) is black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

9

5

- Insert 10
 - Where does it go?What color?

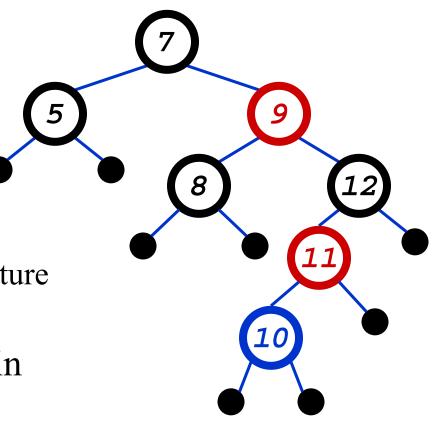
Red-black properties:

- 1. Every node is either red or black
- 2. The root is always black
- 3. Every leaf (NULL pointer) is black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

9

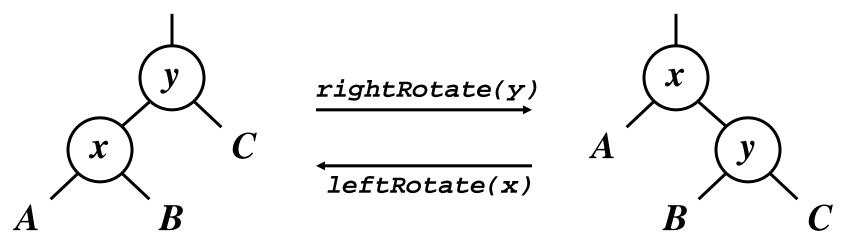
1 ()

- Insert 10
 - Where does it go?
 - What color?
 - A: no color! Tree is too imbalanced
 - Must change tree structure to allow recoloring
 - Goal: restructure tree in
 O(lg n) time



RB Trees: Rotation

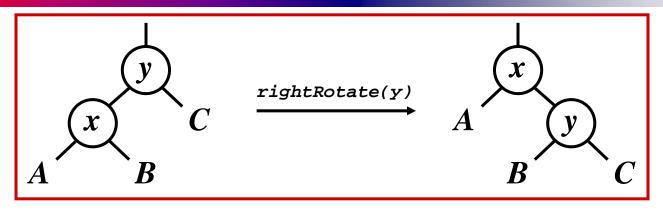
• Our basic operation for changing tree structure is called *rotation*:



• Does rotation preserve inorder key ordering?

• What would the code for **rightRotate()** actually do?

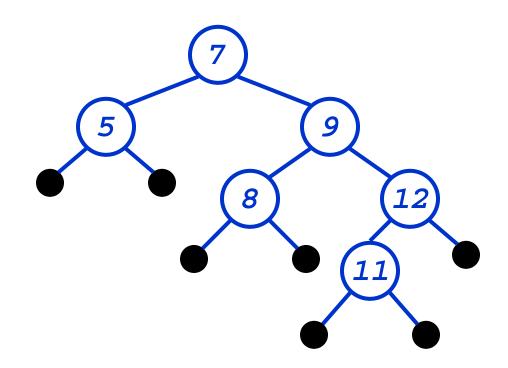
RB Trees: Rotation



- Answer: A lot of pointer manipulation
 - x keeps its left child
 - y keeps its right child
 - x's right child becomes y's left child
 - *x*'s and *y*'s parents change
- What is the running time?

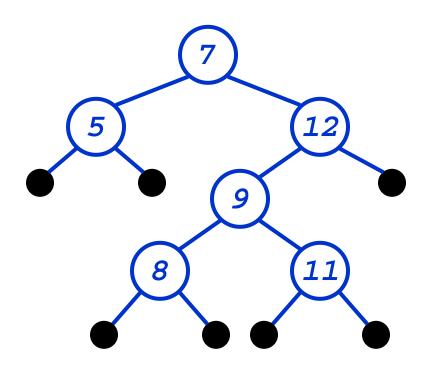
Rotation Example

• Rotate left about 9:



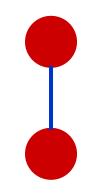
Rotation Example

• Rotate left about 9:



Red-Black Trees: Insertion

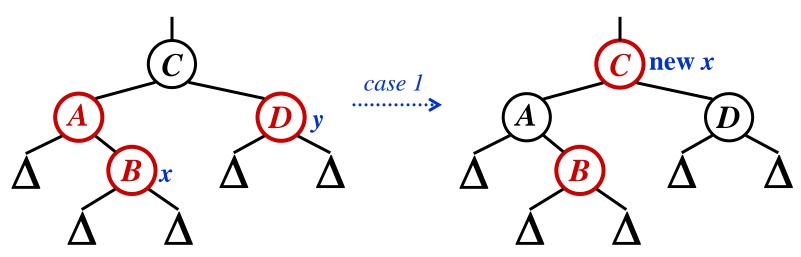
- Insertion: the basic idea
 - Insert x into tree, color x red
 - Only r-b property 4 might be violated (if p[x] red)
 - If so, move violation up tree until a place is found where it can be fixed
 - Total time will be O(lg *n*)



- if (y->color == RED)
 - x->p->color = BLACK;
 - y->color = BLACK;
 - x->p->p->color = RED;

```
x = x - p - p;
```

- Case 1: "uncle" is red
- In figures below, all Δ 's are equal-black-height subtrees

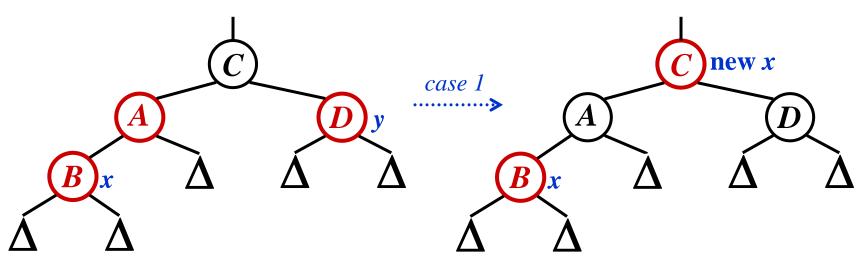


Change colors of some nodes, preserving #5: all downward paths have equal b.h. The while loop now continues with x's grandparent as the new x

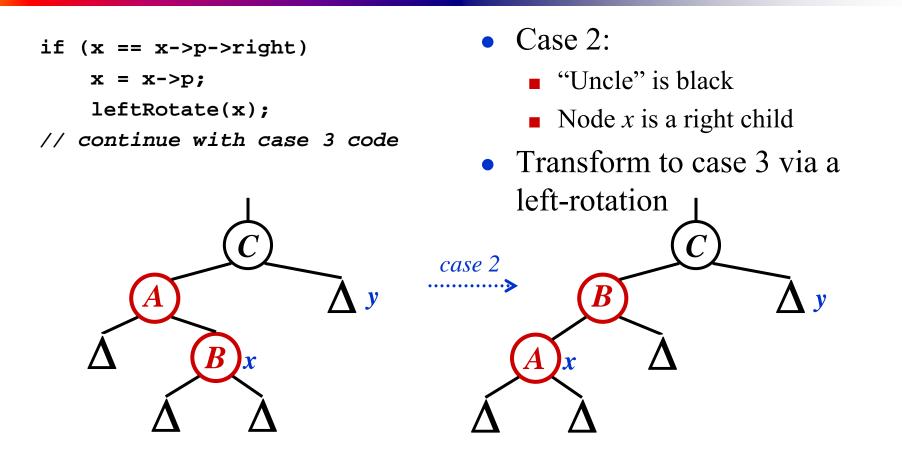
- if (y->color == RED)
 - x->p->color = BLACK;
 - y->color = BLACK;
 - x->p->p->color = RED;

```
x = x - p - p;
```

- Case 1: "uncle" is red
- In figures below, all Δ 's are equal-black-height subtrees



Same action whether x is a left or a right child



Transform case 2 into case 3 (x is left child) with a left rotation This preserves property 5: all downward paths contain same number of black nodes

Case 3: x->p->color = BLACK; • "Uncle" is black x->p->p->color = RED; rightRotate(x->p->p); • Node x is a left child • Change colors; rotate right case 3 \square

Perform some color changes and do a right rotation Again, preserves property 5: all downward paths contain same number of black nodes

RB Insert: Cases 4-6

- Cases 1-3 hold if *x*'s parent is a left child
- If *x*'s parent is a right child, cases 4-6 are symmetric (swap left for right)

rbInsert(x)

treeInsert(x); $x \rightarrow color = RED;$ // Move violation of #4 up tree, maintaining #5 as invariant: while (x!=root && x->p->color == RED) if $(x \rightarrow p == x \rightarrow p \rightarrow p \rightarrow left)$ y = x - p - p - right;if (y->color == RED) x->p->color = BLACK; y->color = BLACK; Case 1 x->p->p->color = RED; x = x - p - p;else // y->color == BLACK if (x == x->p->right) x = x - p;Case 2 leftRotate(x); x->p->color = BLACK; Case 3 x->p->p->color = RED; rightRotate(x->p->p); else $// x \rightarrow p == x \rightarrow p \rightarrow p \rightarrow right$ (same as above, but with "right" & "left" exchanged) 6/19/2014 32

rbInsert(x)

treeInsert(x); $x \rightarrow color = RED;$ // Move violation of #3 up tree, maintaining #4 as invariant: while (x!=root && x->p->color == RED) if $(x \rightarrow p == x \rightarrow p \rightarrow p \rightarrow left)$ y = x - p - p - right;if (y->color == RED) x->p->color = BLACK; y->color = BLACK; Case 1: uncle is RED x->p->p->color = RED; $x = x - \gamma c = x$ else // y->color == BLACK if (x == x->p->right) x = x - p;Case 2 leftRotate(x); x->p->color = BLACK; Case 3 x->p->p->color = RED; rightRotate(x->p->p); else $// x \rightarrow p == x \rightarrow p \rightarrow p \rightarrow right$ (same as above, but with "right" & "left" exchanged) 6/19/2014 33

Red-Black Trees: Deletion

• And you thought insertion was tricky...

Red-Black Trees

Bottom-Up Deletion

Recall "ordinary" BST Delete

- 1. If vertex to be deleted is a leaf, just delete it.
- 2. If vertex to be deleted has just one child, replace it with that child
- 3. Otherwise, if vertex Z has both a left and a right child. We find Z's successor U, replace Z's value by U's value and then delete U (a recursive step, and U must be a leaf or has just one child).

Bottom-Up Deletion

- Do ordinary BST deletion. Eventually a "case 1" or "case 2" will be done (leaf or just one child). If deleted node, U, is a leaf, think of deletion as replacing with the NULL pointer, V. If U had one child, V, think of deletion as replacing U with V.
- 2. What can go wrong??

Which RB Property may be violated after deletion? 1. If U is red? V Not a problem – no RB properties violated

2. If U is black?

If U is not the root, deleting it will change the black-height along some path

Fixing the problem

- Think of V (NULL pointer or U's only child) as having an "extra" unit of blackness. This extra blackness must be absorbed into the tree (by a red node), or propagated up to the root (without violating the RB properties) and out of the tree.
- If V is red, then we color it black to make it absorb the extra black. Otherwise, V is "double black".
- There are four cases our examples and "rules" assume that V is a left child. There are symmetric cases for V as a right child

Terminology

- The node just deleted was U (Z' successor!)
- The node that replaces it is V, which has an extra unit of blackness z
- The parent of V is P
- The sibling of V is S

Red Node

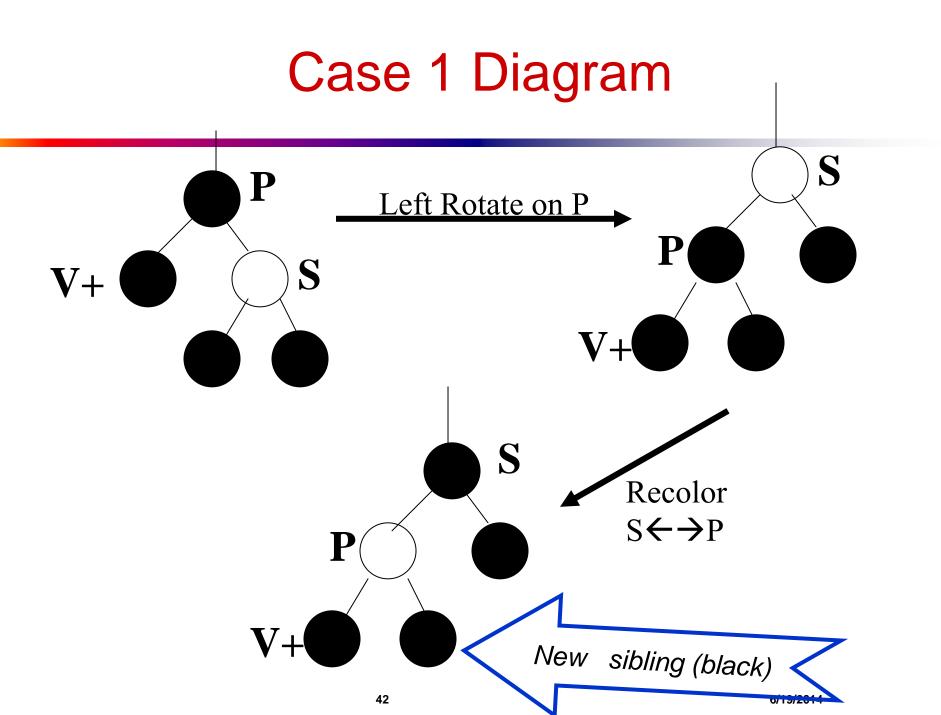
Red or Black and don't care

Ρ

S

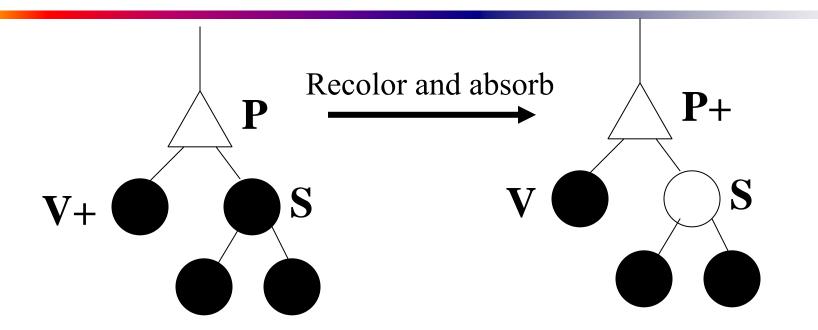
• 4 cases:

- Case 1: V's sibling S is red; \rightarrow Case 2/3/4
- <u>Case 2</u>: V's sibling S is black; S's both children are black; →recursive or terminal
- Case 3: V's sibling S is black; S's left child is red;
 S's right child is black; → Case 4
- Case 4: V's sibling S is black; S's left child is red/black; S's right child is red; terminal case



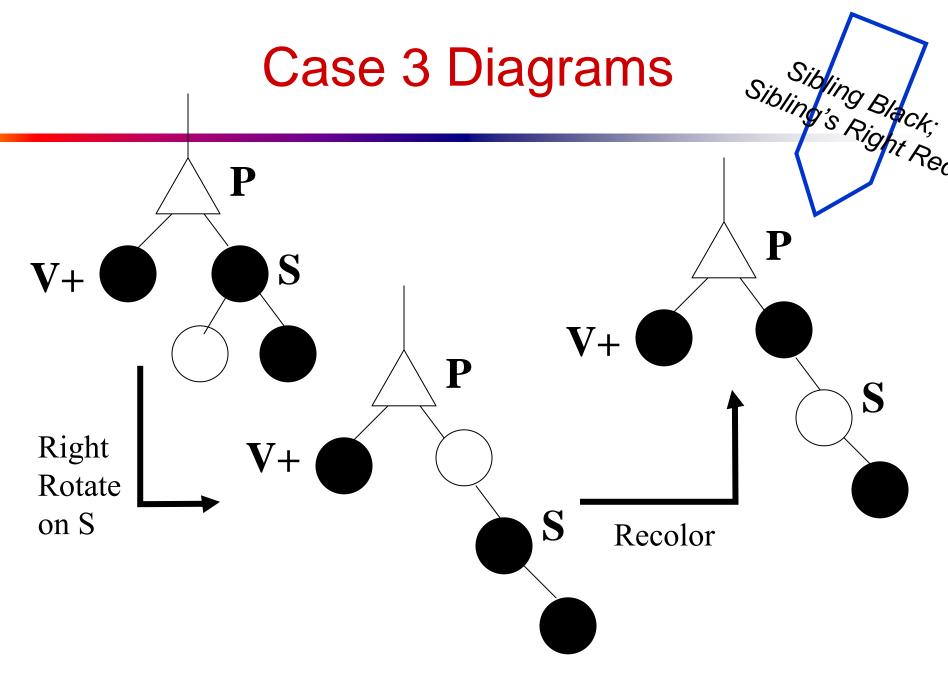
- V's sibling, S, is Red
 - Left Rotation on P and recolor S & P
- NOT a terminal case One of the other cases will now apply
- All other cases apply when S is Black

Case 2 diagram

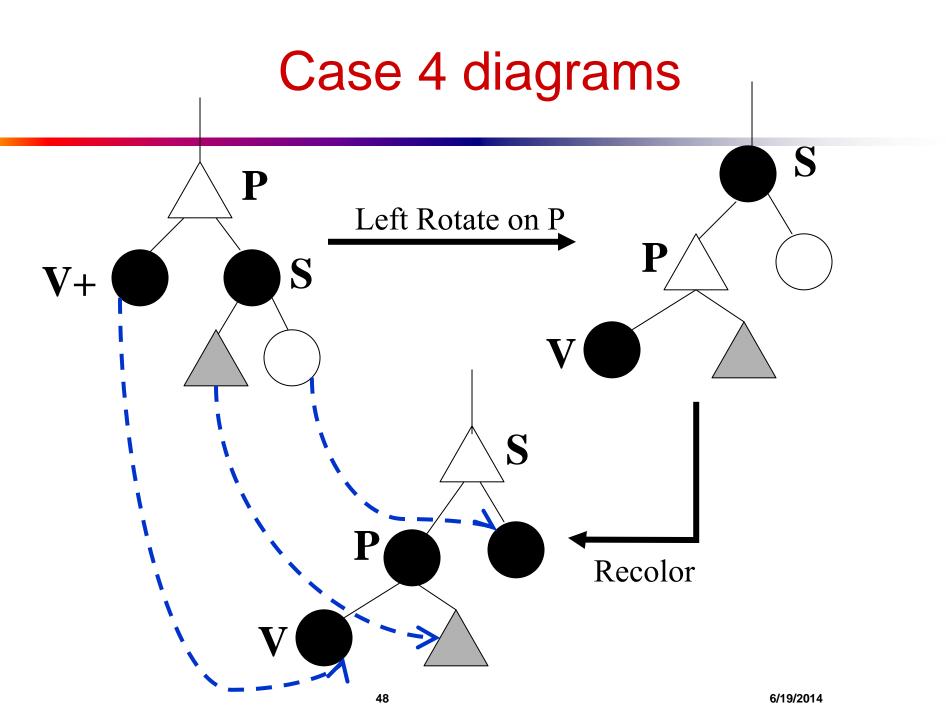


Either extra black absorbed by P (P was Red, now case done) or P now has extra blackness (P was black, now recursive at P+.)

- V's sibling, S, is black and has <u>two black</u> <u>children</u>.
 - Recolor S to be Red
 - P absorbs V's extra blackness
 - If P is Red, we're done
 - If P is Black, it now has extra blackness and problem has been propagated up the tree



- S is Black, S's right child is Black and S's left child is Red
 - Right Rotate on S
 - Swap color of S and S's left child
 - Now in case 4



- S is black
- S's RIGHT child is RED (Left child either color)
 - Rotate S around P
 - Swap colors of S and P, and color S's Right child Black
- This is the terminal case we're done

Back to Case Map

The End