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Red-Black Trees



2 6/19/2014

A little history

●
 

1962: The idea of balancing a search tree is 
due to Adel’son-Velskii

 
and Landis. 

●
 

1970: Hopcroft
 

introduced 2-3 trees. (B-tree is 
a generalization of it)

●
 

1972: Bayer invented Red-black trees.
●

 
1978: Guibas

 
and Sedgewick

 
introduced the 

red/black convention.
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Red-Black Properties

●
 

The red-black properties:
1. Every node is either red or black
2.   The root is always black 
3.   Every leaf (NULL pointer) is black

○
 

Note: this means every “real”
 

node has 2 children

4.   If a node is red, both children are black
○

 
Note: can’t have 2 consecutive reds on a path

5.
 

Every path from node to descendent leaf contains 
the same number of black nodes
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Black-Height

●
 

black-height: # black nodes on path to leaf
●

 
What is the minimum black-height of a node 
with height h?

●
 

A: a height-h node has black-height 
 

h/2
●

 
Theorem: A red-black tree with n internal 
nodes has height h 

 
2 lg(n + 1)

■
 

Proved by induction
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RB Trees: Proving Height Bound

●
 

Prove: n-node RB tree has height h 
 

2 lg(n+1)
●

 
Claim: A subtree

 
rooted at a node x contains 

at least 2bh(x)
 

-
 

1 internal nodes
■

 
Proof by induction on height h 

■
 

Base step: x has height 0 (i.e., NULL leaf node)
○

 
What is bh(x)?
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RB Trees: Proving Height Bound

●
 

Prove: n-node RB tree has height h 
 

2 lg(n+1)
●

 
Claim: A subtree

 
rooted at a node x contains 

at least 2bh(x)
 

-
 

1 internal nodes
■

 
Proof by induction on height h 

■
 

Base step: x has height 0 (i.e., NULL leaf node)
○

 
What is bh(x)?

○
 

A: 0
○

 
So…subtree

 
contains 2bh(x) - 1

 
 

= 20

 
- 1 

= 0 internal nodes   (TRUE)
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RB Trees: Proving Height Bound

●
 

Inductive proof that subtree
 

at node x contains 
at least 2bh(x)

 
-

 
1 internal nodes

■
 

Inductive step: x has positive height and 2 children
○

 
Each child has black-height of bh(x) or bh(x)-1  (Why?)

○
 

The height of a child = (height of x) - 1
○

 
So the subtrees

 
rooted at each child contain at least 

2bh(x) -

 

1

 
-

 
1 internal nodes

○
 

Thus subtree
 

at x contains 
(2bh(x) -

 

1

 
-

 
1) + (2bh(x) -

 

1

 
- 1) + 1

 = 2•2bh(x)-1

 
- 1 = 2bh(x)

 
-

 
1 nodes  
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Proving Height Bound

●
 

Thus at the root of the red-black tree:
n 

 
2bh(root) - 1

n 
 

2h/2
 

- 1
lg(n+1) 

 
h/2

h 
 

2 lg(n + 1)

Thus h = O(lg
 

n)
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RB Trees: Worst-Case Time

●
 

So we’ve proved that a red-black tree has 
O(lg

 
n) height

●
 

Corollary: These operations take O(lg
 

n) time: 
■

 
Minimum(), Maximum()

■
 

Successor(), Predecessor()
■

 
Search()

●
 

Insert() and Delete():
■

 
Will also take O(lg

 
n) time

■
 

But will need special care since they modify tree
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Red-Black Trees: An Example

●
 

Color this tree: 7

5 9

1212

5 9

7

Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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●
 

Insert 8
■

 
Where does it go?

Red-Black Trees: 
The Problem With Insertion

12

5 9

7

Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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●
 

Insert 8
■

 
Where does it go?

■
 

What color 
should it be?

Red-Black Trees: 
The Problem With Insertion

12

5 9

7

8

Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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●
 

Insert 8
■

 
Where does it go?

■
 

What color 
should it be?

Red-Black Trees: 
The Problem With Insertion

12

5 9

7

8

Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes



14 6/19/2014

Red-Black Trees: 
The Problem With Insertion

●
 

Insert 11
■

 
Where does it go?

12

5 9

7

8

Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 11
■

 
Where does it go?

■
 

What color?
12

5 9

7

8

11Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 11
■

 
Where does it go?

■
 

What color?
○

 
Can’t be red! (#4) 12

5 9

7

8

11Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 11
■

 
Where does it go?

■
 

What color?
○

 
Can’t be red! (#4)

○
 

Can’t be black! (#5)
12

5 9

7

8

11Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 11
■

 
Where does it go?

■
 

What color?
○

 
Solution: 
recolor the tree

12

5 9

7

8

11Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 10
■

 
Where does it go?

12

5 9

7

8

11Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 10
■

 
Where does it go?

■
 

What color?
12

5 9

7

8

11

10

Red-black properties:
1.

 
Every node is either red or black

2.
 

The root is always black
3.

 
Every leaf (NULL pointer) is black

4.
 

If a node is red, both children are black
5.

 
Every path from node to descendent leaf

 contains the same number of black nodes
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Red-Black Trees: 
The Problem With Insertion

●
 

Insert 10
■

 
Where does it go?

■
 

What color?
○

 
A: no color! Tree 
is too imbalanced

○
 

Must change tree structure
 to allow recoloring

■
 

Goal: restructure tree in 
O(lg

 
n) time

12

5 9

7

8

11

10
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RB Trees: Rotation

●
 

Our basic operation for changing tree structure 
is called rotation:

●
 

Does rotation preserve inorder key ordering?
●

 
What would the code for rightRotate() 
actually do?

y

x C

A B

x

A y

B C

rightRotate(y)

leftRotate(x)
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rightRotate(y)

RB Trees: Rotation

●
 

Answer: A lot of pointer manipulation
■

 
x keeps its left child

■
 

y keeps its right child
■

 
x’s

 
right child becomes y’s

 
left child

■
 

x’s
 

and y’s
 

parents change
●

 
What is the running time?

y

x C

A B

x

A y

B C
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Rotation Example

●
 

Rotate left about 9:

12

5 9

7

8

11
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Rotation Example

●
 

Rotate left about 9:

5 12

7

9

118
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Red-Black Trees: Insertion

●
 

Insertion: the basic idea
■

 
Insert x into tree, color x red

■
 

Only r-b property 4 might be violated (if p[x] red)
○

 
If so, move violation up tree until a place is found where 
it can be fixed

■
 

Total time will be O(lg
 

n)
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RB Insert: Case 1

if (y->color == RED)
x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

●
 

Case 1: “uncle”
 

is red
●

 
In figures below, all ’s are 
equal-black-height subtrees

C
A D

 B

 
 

C
A D

 B

 
 x

y

new x

Change colors of some nodes, preserving #5: all downward paths have equal b.h.
The while loop now continues with x’s grandparent as the new x

case 1
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B

 
x

RB Insert: Case 1

if (y->color == RED)
x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

●
 

Case 1: “uncle”
 

is red
●

 
In figures below, all ’s are 
equal-black-height subtrees

C
A D

  

C
A D

 
y

new x

Same action whether x is a left or a right child

B

 
x 

case 1
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B

 
x

RB Insert: Case 2

if (x == x->p->right)
x = x->p;
leftRotate(x);

// continue with case 3 code

●
 

Case 2:
■

 
“Uncle”

 
is black

■
 

Node x is a right child

●
 

Transform to case 3 via a 
left-rotation

C
A 

C
By

A

 
x 

case 2


y

Transform case 2 into case 3 (x is left child) with a left rotation
This preserves property 5: all downward paths contain same number of black nodes
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RB Insert: Case 3

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

●
 

Case 3:
■

 
“Uncle”

 
is black

■
 

Node x is a left child

●
 

Change colors; rotate right

B
Ax



case 3C
B

A

 
x 

y C

 

Perform some color changes and do a right rotation
Again, preserves property 5: all downward paths contain same number of black nodes
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RB Insert: Cases 4-6

●
 

Cases 1-3 hold if x’s
 

parent is a left child
●

 
If x’s

 
parent is a right child, cases 4-6 are 

symmetric (swap left for right)
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rbInsert(x)
treeInsert(x);
x->color = RED;
// Move violation of #4 up tree, maintaining #5 as invariant:
while (x!=root && x->p->color == RED)
if (x->p == x->p->p->left)

y = x->p->p->right;
if (y->color == RED)

x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

else   // y->color == BLACK
if (x == x->p->right)

x = x->p;
leftRotate(x);

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

else    // x->p == x->p->p->right
(same as above, but with
“right” & “left” exchanged)

Case 1

Case 2

Case 3
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rbInsert(x)
treeInsert(x);
x->color = RED;
// Move violation of #3 up tree, maintaining #4 as invariant:
while (x!=root && x->p->color == RED)
if (x->p == x->p->p->left)

y = x->p->p->right;
if (y->color == RED)

x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

else   // y->color == BLACK
if (x == x->p->right)

x = x->p;
leftRotate(x);

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

else    // x->p == x->p->p->right
(same as above, but with
“right” & “left” exchanged)

Case 1: uncle is RED

Case 2

Case 3



34 6/19/2014

Red-Black Trees: Deletion

●
 

And you thought insertion was tricky…
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Red-Black Trees

Bottom-Up Deletion
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Recall “ordinary”
 

BST Delete

1.     If vertex to be deleted is a leaf, just delete it.
2.     If vertex to be deleted has just one child, replace it with that 

child
3.      Otherwise, if vertex Z has both a left and a right child. We 

find Z’s successor U, replace Z’s value by U’s value and 
then delete U (a recursive step, and U must be a leaf or has 
just one child).
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Bottom-Up Deletion

1.
 

Do ordinary BST deletion.  Eventually a 
“case 1”

 
or “case 2“

 
will be done (leaf or just 

one child).  If deleted node, U,  is a leaf, 
think of deletion as replacing with the NULL 
pointer, V.  If U had one child, V, think of 
deletion as replacing U with V.

2.
 

What can go wrong??

U

U

V
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Which RB Property may be violated 
after deletion?

1.
 

If U is red?
 

Not a problem –
 

no RB properties violated

2.
 

If U is black?
 

If U is not the root, deleting it will change 
the black-height along some path

U
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Fixing the problem

●
 

Think of V (NULL pointer or U’s only child) as 
having an “extra”

 
unit of blackness.  This extra 

blackness must be absorbed into the tree (by a red 
node), or propagated up to the root  (without violating 
the RB properties)

 
and out of the tree.

●
 

If V is red, then we color it black to make it absorb 
the extra black. Otherwise, V is “double black”. 

●
 

There are four cases –
 

our examples and “rules”
 assume that V is a left child.  There are symmetric 

cases for V as a right child
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Terminology

●
 

The node just deleted was U (Z’
 

successor!)
●

 
The node that replaces it is V, which has an 
extra unit of blackness

●
 

The parent of V is P
●

 
The sibling of V is S

Black Node

Red Node Red or Black and don’t care

Z

U

V

P

S
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●
 

4 cases:
■

 
Case 1: V’s sibling S is red;  Case 2/3/4

■
 

Case 2: V’s sibling S is black; S’s both children 
are black; recursive or terminal

■
 

Case 3: V’s sibling S is black; S’s left child is red; 
S’s right child is black;  Case 4

■
 

Case 4: V’s sibling S is black; S’s left child is 
red/black; S’s right child is red; terminal case
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Case 1 Diagram

P

SV+
P

S

V+

Left Rotate on P

P

V+

S
Recolor 
SP

New   sibling (black)
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Bottom-Up Deletion 
Case 1

●
 

V’s sibling, S, is Red
■

 
Left Rotation on P and recolor S & P

●
 

NOT a terminal case –
 

One of the other cases 
will now apply

●
 

All other cases apply when S is Black

Back to Case Map
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Case 2 diagram

P

SV+

P+

SV

Recolor and absorb

Either extra black absorbed by P (P was Red, now case 
done) or P now has extra blackness (P was black, now 
recursive at P+.)
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Bottom-Up Deletion 
Case 2

●
 

V’s sibling, S, is black and has two black 
children.
■

 
Recolor S to be Red

■
 

P absorbs V’s extra blackness
○

 
If P is Red, we’re done

○
 

If P is Black, it now has extra blackness and problem 
has been propagated up the tree

Back to Case Map



46 6/19/2014

Case 3 Diagrams

P

SV+

P

S
V+Right 

Rotate 
on S

P

S
V+

Recolor

Sibling Black;
Sibling’s Right Red
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Bottom-Up Deletion 
Case 3

●
 

S is Black, S’s right child is Black and S’s left 
child is Red
■

 
Right Rotate

 
on S

■
 

Swap color of S and S’s left child
■

 
Now in case 4

Back to Case Map
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Case 4 diagrams

P

SV+ P

S

V

Left Rotate on P

P

S

V

Recolor



49 6/19/2014

Bottom-Up Deletion 
Case 4

●
 

S is black
●

 
S’s RIGHT child is RED (Left child either 
color)
■

 
Rotate S around P

■
 

Swap colors of S and P, and color S’s Right child 
Black

●
 

This is the terminal case –
 

we’re done

Back to Case Map
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The End


	幻灯片编号 1
	A little history
	Red-Black Properties
	Black-Height
	RB Trees: Proving Height Bound
	RB Trees: Proving Height Bound
	RB Trees: Proving Height Bound
	Proving Height Bound
	RB Trees: Worst-Case Time
	Red-Black Trees: An Example
	Red-Black Trees: �The Problem With Insertion
	Red-Black Trees: �The Problem With Insertion
	Red-Black Trees: �The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	RB Trees: Rotation
	RB Trees: Rotation
	Rotation Example
	Rotation Example
	Red-Black Trees: Insertion
	RB Insert: Case 1
	RB Insert: Case 1
	RB Insert: Case 2
	RB Insert: Case 3
	RB Insert: Cases 4-6
	幻灯片编号 32
	幻灯片编号 33
	Red-Black Trees: Deletion
	Red-Black Trees
	Recall “ordinary” BST Delete
	Bottom-Up Deletion
	Which RB Property may be violated after deletion?
	Fixing the problem
	Terminology
	幻灯片编号 41
	Case 1 Diagram
	Bottom-Up Deletion�Case 1
	Case 2 diagram
	Bottom-Up Deletion�Case 2
	Case 3 Diagrams
	Bottom-Up Deletion�Case 3
	Case 4 diagrams
	Bottom-Up Deletion�Case 4
	The End

