
1 6/19/2014

Red-Black Trees

2 6/19/2014

A little history

●

1962: The idea of balancing a search tree is
due to Adel’son-Velskii

and Landis.

●

1970: Hopcroft

introduced 2-3 trees. (B-tree is
a generalization of it)

●

1972: Bayer invented Red-black trees.
●

1978: Guibas

and Sedgewick

introduced the

red/black convention.

3 6/19/2014

Red-Black Properties

●

The red-black properties:
1. Every node is either red or black
2. The root is always black
3. Every leaf (NULL pointer) is black

○

Note: this means every “real”

node has 2 children

4. If a node is red, both children are black
○

Note: can’t have 2 consecutive reds on a path

5.

Every path from node to descendent leaf contains
the same number of black nodes

4 6/19/2014

Black-Height

●

black-height: # black nodes on path to leaf
●

What is the minimum black-height of a node
with height h?

●

A: a height-h node has black-height

h/2
●

Theorem: A red-black tree with n internal
nodes has height h

2 lg(n + 1)

■

Proved by induction

5 6/19/2014

RB Trees: Proving Height Bound

●

Prove: n-node RB tree has height h

2 lg(n+1)
●

Claim: A subtree

rooted at a node x contains

at least 2bh(x)

-

1 internal nodes
■

Proof by induction on height h

■

Base step: x has height 0 (i.e., NULL leaf node)
○

What is bh(x)?

6 6/19/2014

RB Trees: Proving Height Bound

●

Prove: n-node RB tree has height h

2 lg(n+1)
●

Claim: A subtree

rooted at a node x contains

at least 2bh(x)

-

1 internal nodes
■

Proof by induction on height h

■

Base step: x has height 0 (i.e., NULL leaf node)
○

What is bh(x)?

○

A: 0
○

So…subtree

contains 2bh(x) - 1

= 20

- 1

= 0 internal nodes (TRUE)

7 6/19/2014

RB Trees: Proving Height Bound

●

Inductive proof that subtree

at node x contains
at least 2bh(x)

-

1 internal nodes

■

Inductive step: x has positive height and 2 children
○

Each child has black-height of bh(x) or bh(x)-1 (Why?)

○

The height of a child = (height of x) - 1
○

So the subtrees

rooted at each child contain at least

2bh(x) -

1

-

1 internal nodes

○

Thus subtree

at x contains
(2bh(x) -

1

-

1) + (2bh(x) -

1

- 1) + 1

 = 2•2bh(x)-1

- 1 = 2bh(x)

-

1 nodes

8 6/19/2014

Proving Height Bound

●

Thus at the root of the red-black tree:
n

2bh(root) - 1

n

2h/2

- 1
lg(n+1)

h/2

h

2 lg(n + 1)

Thus h = O(lg

n)

9 6/19/2014

RB Trees: Worst-Case Time

●

So we’ve proved that a red-black tree has
O(lg

n) height

●

Corollary: These operations take O(lg

n) time:
■

Minimum(), Maximum()

■

Successor(), Predecessor()
■

Search()

●

Insert() and Delete():
■

Will also take O(lg

n) time

■

But will need special care since they modify tree

10 6/19/2014

Red-Black Trees: An Example

●

Color this tree: 7

5 9

1212

5 9

7

Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

11 6/19/2014

●

Insert 8
■

Where does it go?

Red-Black Trees:
The Problem With Insertion

12

5 9

7

Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

12 6/19/2014

●

Insert 8
■

Where does it go?

■

What color
should it be?

Red-Black Trees:
The Problem With Insertion

12

5 9

7

8

Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

13 6/19/2014

●

Insert 8
■

Where does it go?

■

What color
should it be?

Red-Black Trees:
The Problem With Insertion

12

5 9

7

8

Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

14 6/19/2014

Red-Black Trees:
The Problem With Insertion

●

Insert 11
■

Where does it go?

12

5 9

7

8

Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

15 6/19/2014

Red-Black Trees:
The Problem With Insertion

●

Insert 11
■

Where does it go?

■

What color?
12

5 9

7

8

11Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

16 6/19/2014

Red-Black Trees:
The Problem With Insertion

●

Insert 11
■

Where does it go?

■

What color?
○

Can’t be red! (#4) 12

5 9

7

8

11Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

17 6/19/2014

Red-Black Trees:
The Problem With Insertion

●

Insert 11
■

Where does it go?

■

What color?
○

Can’t be red! (#4)

○

Can’t be black! (#5)
12

5 9

7

8

11Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

18 6/19/2014

Red-Black Trees:
The Problem With Insertion

●

Insert 11
■

Where does it go?

■

What color?
○

Solution:
recolor the tree

12

5 9

7

8

11Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

19 6/19/2014

Red-Black Trees:
The Problem With Insertion

●

Insert 10
■

Where does it go?

12

5 9

7

8

11Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

20 6/19/2014

Red-Black Trees:
The Problem With Insertion

●

Insert 10
■

Where does it go?

■

What color?
12

5 9

7

8

11

10

Red-black properties:
1.

Every node is either red or black

2.

The root is always black
3.

Every leaf (NULL pointer) is black

4.

If a node is red, both children are black
5.

Every path from node to descendent leaf

 contains the same number of black nodes

21 6/19/2014

Red-Black Trees:
The Problem With Insertion

●

Insert 10
■

Where does it go?

■

What color?
○

A: no color! Tree
is too imbalanced

○

Must change tree structure
 to allow recoloring

■

Goal: restructure tree in
O(lg

n) time

12

5 9

7

8

11

10

22 6/19/2014

RB Trees: Rotation

●

Our basic operation for changing tree structure
is called rotation:

●

Does rotation preserve inorder key ordering?
●

What would the code for rightRotate()
actually do?

y

x C

A B

x

A y

B C

rightRotate(y)

leftRotate(x)

23 6/19/2014

rightRotate(y)

RB Trees: Rotation

●

Answer: A lot of pointer manipulation
■

x keeps its left child

■

y keeps its right child
■

x’s

right child becomes y’s

left child

■

x’s

and y’s

parents change
●

What is the running time?

y

x C

A B

x

A y

B C

24 6/19/2014

Rotation Example

●

Rotate left about 9:

12

5 9

7

8

11

25 6/19/2014

Rotation Example

●

Rotate left about 9:

5 12

7

9

118

26 6/19/2014

Red-Black Trees: Insertion

●

Insertion: the basic idea
■

Insert x into tree, color x red

■

Only r-b property 4 might be violated (if p[x] red)
○

If so, move violation up tree until a place is found where
it can be fixed

■

Total time will be O(lg

n)

27 6/19/2014

RB Insert: Case 1

if (y->color == RED)
x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

●

Case 1: “uncle”

is red
●

In figures below, all ’s are
equal-black-height subtrees

C
A D

 B

C
A D

 B

 x

y

new x

Change colors of some nodes, preserving #5: all downward paths have equal b.h.
The while loop now continues with x’s grandparent as the new x

case 1

28 6/19/2014

B

x

RB Insert: Case 1

if (y->color == RED)
x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

●

Case 1: “uncle”

is red
●

In figures below, all ’s are
equal-black-height subtrees

C
A D

C
A D

y

new x

Same action whether x is a left or a right child

B

x

case 1

29 6/19/2014

B

x

RB Insert: Case 2

if (x == x->p->right)
x = x->p;
leftRotate(x);

// continue with case 3 code

●

Case 2:
■

“Uncle”

is black

■

Node x is a right child

●

Transform to case 3 via a
left-rotation

C
A

C
By

A

x

case 2

y

Transform case 2 into case 3 (x is left child) with a left rotation
This preserves property 5: all downward paths contain same number of black nodes

30 6/19/2014

RB Insert: Case 3

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

●

Case 3:
■

“Uncle”

is black

■

Node x is a left child

●

Change colors; rotate right

B
Ax

case 3C
B

A

x

y C

Perform some color changes and do a right rotation
Again, preserves property 5: all downward paths contain same number of black nodes

31 6/19/2014

RB Insert: Cases 4-6

●

Cases 1-3 hold if x’s

parent is a left child
●

If x’s

parent is a right child, cases 4-6 are

symmetric (swap left for right)

32 6/19/2014

rbInsert(x)
treeInsert(x);
x->color = RED;
// Move violation of #4 up tree, maintaining #5 as invariant:
while (x!=root && x->p->color == RED)
if (x->p == x->p->p->left)

y = x->p->p->right;
if (y->color == RED)

x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

else // y->color == BLACK
if (x == x->p->right)

x = x->p;
leftRotate(x);

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

else // x->p == x->p->p->right
(same as above, but with
“right” & “left” exchanged)

Case 1

Case 2

Case 3

33 6/19/2014

rbInsert(x)
treeInsert(x);
x->color = RED;
// Move violation of #3 up tree, maintaining #4 as invariant:
while (x!=root && x->p->color == RED)
if (x->p == x->p->p->left)

y = x->p->p->right;
if (y->color == RED)

x->p->color = BLACK;
y->color = BLACK;
x->p->p->color = RED;
x = x->p->p;

else // y->color == BLACK
if (x == x->p->right)

x = x->p;
leftRotate(x);

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

else // x->p == x->p->p->right
(same as above, but with
“right” & “left” exchanged)

Case 1: uncle is RED

Case 2

Case 3

34 6/19/2014

Red-Black Trees: Deletion

●

And you thought insertion was tricky…

35 6/19/2014

Red-Black Trees

Bottom-Up Deletion

36 6/19/2014

Recall “ordinary”

BST Delete

1. If vertex to be deleted is a leaf, just delete it.
2. If vertex to be deleted has just one child, replace it with that

child
3. Otherwise, if vertex Z has both a left and a right child. We

find Z’s successor U, replace Z’s value by U’s value and
then delete U (a recursive step, and U must be a leaf or has
just one child).

37 6/19/2014

Bottom-Up Deletion

1.

Do ordinary BST deletion. Eventually a
“case 1”

or “case 2“

will be done (leaf or just

one child). If deleted node, U, is a leaf,
think of deletion as replacing with the NULL
pointer, V. If U had one child, V, think of
deletion as replacing U with V.

2.

What can go wrong??

U

U

V

38 6/19/2014

Which RB Property may be violated
after deletion?

1.

If U is red?

Not a problem –

no RB properties violated

2.

If U is black?

If U is not the root, deleting it will change
the black-height along some path

U

39 6/19/2014

Fixing the problem

●

Think of V (NULL pointer or U’s only child) as
having an “extra”

unit of blackness. This extra

blackness must be absorbed into the tree (by a red
node), or propagated up to the root (without violating
the RB properties)

and out of the tree.

●

If V is red, then we color it black to make it absorb
the extra black. Otherwise, V is “double black”.

●

There are four cases –

our examples and “rules”
 assume that V is a left child. There are symmetric

cases for V as a right child

40 6/19/2014

Terminology

●

The node just deleted was U (Z’

successor!)
●

The node that replaces it is V, which has an
extra unit of blackness

●

The parent of V is P
●

The sibling of V is S

Black Node

Red Node Red or Black and don’t care

Z

U

V

P

S

41 6/19/2014

●

4 cases:
■

Case 1: V’s sibling S is red; Case 2/3/4

■

Case 2: V’s sibling S is black; S’s both children
are black; recursive or terminal

■

Case 3: V’s sibling S is black; S’s left child is red;
S’s right child is black; Case 4

■

Case 4: V’s sibling S is black; S’s left child is
red/black; S’s right child is red; terminal case

42 6/19/2014

Case 1 Diagram

P

SV+
P

S

V+

Left Rotate on P

P

V+

S
Recolor
SP

New sibling (black)

43 6/19/2014

Bottom-Up Deletion
Case 1

●

V’s sibling, S, is Red
■

Left Rotation on P and recolor S & P

●

NOT a terminal case –

One of the other cases
will now apply

●

All other cases apply when S is Black

Back to Case Map

44 6/19/2014

Case 2 diagram

P

SV+

P+

SV

Recolor and absorb

Either extra black absorbed by P (P was Red, now case
done) or P now has extra blackness (P was black, now
recursive at P+.)

45 6/19/2014

Bottom-Up Deletion
Case 2

●

V’s sibling, S, is black and has two black
children.
■

Recolor S to be Red

■

P absorbs V’s extra blackness
○

If P is Red, we’re done

○

If P is Black, it now has extra blackness and problem
has been propagated up the tree

Back to Case Map

46 6/19/2014

Case 3 Diagrams

P

SV+

P

S
V+Right

Rotate
on S

P

S
V+

Recolor

Sibling Black;
Sibling’s Right Red

47 6/19/2014

Bottom-Up Deletion
Case 3

●

S is Black, S’s right child is Black and S’s left
child is Red
■

Right Rotate

on S

■

Swap color of S and S’s left child
■

Now in case 4

Back to Case Map

48 6/19/2014

Case 4 diagrams

P

SV+ P

S

V

Left Rotate on P

P

S

V

Recolor

49 6/19/2014

Bottom-Up Deletion
Case 4

●

S is black
●

S’s RIGHT child is RED (Left child either
color)
■

Rotate S around P

■

Swap colors of S and P, and color S’s Right child
Black

●

This is the terminal case –

we’re done

Back to Case Map

50 6/19/2014

The End

	幻灯片编号 1
	A little history
	Red-Black Properties
	Black-Height
	RB Trees: Proving Height Bound
	RB Trees: Proving Height Bound
	RB Trees: Proving Height Bound
	Proving Height Bound
	RB Trees: Worst-Case Time
	Red-Black Trees: An Example
	Red-Black Trees: �The Problem With Insertion
	Red-Black Trees: �The Problem With Insertion
	Red-Black Trees: �The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	Red-Black Trees:�The Problem With Insertion
	RB Trees: Rotation
	RB Trees: Rotation
	Rotation Example
	Rotation Example
	Red-Black Trees: Insertion
	RB Insert: Case 1
	RB Insert: Case 1
	RB Insert: Case 2
	RB Insert: Case 3
	RB Insert: Cases 4-6
	幻灯片编号 32
	幻灯片编号 33
	Red-Black Trees: Deletion
	Red-Black Trees
	Recall “ordinary” BST Delete
	Bottom-Up Deletion
	Which RB Property may be violated after deletion?
	Fixing the problem
	Terminology
	幻灯片编号 41
	Case 1 Diagram
	Bottom-Up Deletion�Case 1
	Case 2 diagram
	Bottom-Up Deletion�Case 2
	Case 3 Diagrams
	Bottom-Up Deletion�Case 3
	Case 4 diagrams
	Bottom-Up Deletion�Case 4
	The End

