作业1-10

UD第13章问题**3**、4、**5**、11、13 UD第14章问题**8**、12、**13**、15 UD第15章问题1、6、7、**11**、12、13、14、**15**、20 UD第16章问题19、20、**21**、22 UD第27章项目6 **Problem 13.3** Which of the following are functions from the set *A* to the set *B*? Give reasons for your answers.

(g) Define $f: \mathbb{Q} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x+1 & \text{if } x \in 2\mathbb{Z} \\ x-1 & \text{if } x \in 3\mathbb{Z} \\ 2 & \text{otherwise} \end{cases}.$$

f(6)?

Problem 13.5. Let X be a nonempty set and let A be a subset of X. The **characteristic function** or **indicator function** of the set A in X is

$$\chi_A: X \to \{0,1\} \text{ defined by } \chi_A(x) = \begin{cases} 1 \text{ if } x \in A \\ 0 \text{ if } x \in X \setminus A \end{cases}.$$

- (a) Since this is called the characteristic function, it probably is a function, but check this carefully anyway.
- (b) Determine the domain and range of this function. Make sure you look at all possibilities for *A* and *X*.

$$Dom(f) = X$$

$$ran(f) = \{0,1\}$$

The domain of the function is the set X.

If
$$A=\varnothing$$
 , then $ran\left(f\right)=\left\{0\right\}$. If $A\neq\varnothing$ and $A\subset X$, then $ran\left(f\right)=\left\{0,1\right\}$. If

$$A = X$$
, then $ran(f) = \{1\}$.

Problem 14.8. For each of the functions below, determine whether or not the function is one-to-one and whether or not the function is onto. If the function is not one-to-one, give an explicit example to show what goes wrong. If it is not onto, determine the range.

- (a) Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = 1/(x^2 + 1)$.
- (b) Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \sin(x)$. (Assume familiar facts about the sine function.)
- (c) Define $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ by f(n,m) = nm. (d) Define $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ by f(n,m) = nm. (f) It is one-to-one f((x,y), (u,y)) = xy + yy (Do you recognize this Case 1: |B| > 2, not onto! Onto? Case1: $|B| \ge 2$, not onto! Case 2:|B|=1, onto range is $\{(a,b),a\in A\}$ $f((x,y),(\iota$ o you recognize this function?)
- (f) Let A and B be nonempty and $b \in B$. Define $f: A \to A \times B$ by f(a) = (a,b).
- (g) Let *X* be a nonempty set. Define $f: \mathcal{P}(X) \to \mathcal{P}(X)$ by $f(A) = X \setminus A$.
- (h) Let B be a fixed proper subset of a nonempty set X. We define a function $f: \mathscr{P}(X) \to \mathscr{P}(X)$ by $f(A) = A \cap B$.
- (i) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 2 - x & \text{if } x < 1 \\ 1/x & \text{otherwise} \end{cases}.$$

Problem 14.13 Let F([0,1]) denote the set of all real-valued functions defined on the closed interval [0,1]. Define a new function $\phi : F([0,1]) \to \mathbb{R}$ by $\phi(f) = f(0)$. Is ϕ a function from F([0,1]) to \mathbb{R} ? Is it one-to-one? Is it onto? Remember to prove all claims, and to provide examples where appropriate.

Solution

We note that ϕ is a function.

This is not one-to-one because two different functions can map zero to the same value; that is, if we take f defined by f(x) = 0 for all x and we take g defined by g(x) = x for all x, then $f \neq g$ but $\phi(f) = f(0) = 0 = g(0) = \phi(g)$.

This is onto, however. Take $x \in \mathbb{R}$ and note that the constant function f_x defined by $f_x(y) = x$ for all $y \in [0,1]$ is an element of F([0,1]). Therefore, $\phi(f_x) = f_x(0) = x$. So ϕ is onto.

Problem 15.11 Suppose that $f: A \to B$ and g_1 and g_2 are functions from B to A such that $f \circ g_1 = f \circ g_2$. Show that if f is bijective, then $g_1 = g_2$. If $g_1 \circ f = g_2 \circ f$ and f is bijective, must $g_1 = g_2$?

$$f \circ g1 = f \circ g2$$
,
so $\forall x \in B$, $f(g1(x)) = f(g2(x))$
because f is bijection
 $g1(x) = g2(x)$ for all $x \in B$
so $g1 = g2$

$$g1 \cdot f = g2 \cdot f$$
,
so $\forall x \in A$, $g1(f(x)) = g2(f(x))$
because f is bijection
so $g1(x) = g2(x)$ for all $x \in B$
so $g1 = g2$

If
$$g_1 \circ f = g_2 \circ f$$
, then likewise we can get $g_1 = g_2$ but $X \in dom(f^{-1}) = ran(f)$,

the domains of g_1 and g_2 may not be same. So g_1 and g_2 do not need to equal.

∴
$$f$$
 is bijection
∴ $\forall x (x \in B \to \exists y (y \in A \land f(y) = x))$
 $X ∴ g_1 ∘ f(y) = g_2 ∘ f(y)$
∴ $g_1(x) = g_2(x)$

Problem[#] **15.15** Let A, B, C, and D be nonempty sets. Let $f : A \to B$ and $g : C \to D$ be functions. Consider H defined on $A \cup C$ by

$$H(x) = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in C \end{cases}.$$

consider
$$A=\{1,2\}, B=\{3,4\}C=\{1,2\}D=\{5,6\}$$

 $f(x)=x+2, g(x)=x+4$
 $H(1)=f(1)=3$ $H(1)=g(1)=5$
then H is not a function

consider
$$A=\{1,2\}, B=\{3,4\}C=\{3,4\}D=\{5,6\}$$

 $f(x)=x+2, g(x)=x+2$
then H is a function
when $A \cap C=\emptyset$, H is a function

If
$$A \cap C \neq \emptyset$$
?
if $\forall x \in A \cap C$, $f(x) = g(x) \Rightarrow H(x)$ is a function

$$\forall x \in A \cap C$$
, $f(x) = g(x) \Rightarrow H(x)$ is a function

Problem 16.21 Suppose that $f: X \to Y$ is a function, and let B_1 and B_2 be subsets of Y.

- (a) If $f^{-1}(B_1) = f^{-1}(B_2)$, must $B_1 = B_2$?
- (b) Let f be a bijective function. Show that if $f^{-1}(B_1) = f^{-1}(B_2)$, then $B_1 = B_2$. Indicate clearly where you use one-to-one or onto. Did you use both?
 - (b) 区分: $f^{-1}(a) = f^{-1}(\{a\})$


```
f is onto

\forall b \in B_1, 则存在a \in A, s.t.,

f(a) = b

f(a) \in f^{-1}(B_1) = f^{-1}(B_2)

又f is a function

f(a) = b \in B_2

f(a) = b \in B_2

g(a) \in B_1 \subseteq B_2

同理可证: g(a) \in B_2

g(a) \in B_2

g(a) \in B_2

g(a) \in B_2
```

no, just use onto

In what follows, $f: X \to Y$ will always denote a bijective function between two subsets, X and Y, of \mathbb{R} satisfying $f^{-1} = 1/f$.

- 1. What can you say about the domain and range of such a function?
- 2. Find an example of such a function, where the domain of f consists of a single point. $f = \{(1,1)\}$ $f = \{(1,1), (-1,-1)\}$
- 3. Find an example of such a function on a domain consisting of two points.
- 4. Can such a function f exist on the integers? Why or why not?
- 5. Show that $(f \circ f)(x) = 1/x$ and f(1/f(x)) = x for all $x \in X$.
- 6. Show that f(1/x) = 1/f(x) for all $x \in X$.
- 7. Define a function $g: (\mathbb{R} \setminus \{0\}) \to (\mathbb{R} \setminus \{0\})$ by

$$g(x) = \begin{cases} -x^3, & \text{if } x > 0\\ -1/(x^{1/3}), & \text{if } x < 0. \end{cases}$$

$$(f \circ f)(x) = f(f(x))$$

$$= \frac{1}{f^{-1}(f(x))}$$

$$= \frac{1}{(f^{-1} \circ f)(x)}$$

$$= \frac{1}{x}$$

$$f\left(\frac{1}{f(x)}\right) = f\left(f^{-1}(x)\right) = x$$

$$\left(-1/(x^{1/3}), \text{ if } x < 0. \right)$$

$$f\left(\frac{1}{f(x)}\right) = f\left(f^{-1}(x)\right) = x$$

$$f^{-1} = \frac{1}{f} \Rightarrow f = \frac{1}{f^{-1}} \Rightarrow f \circ \left(f \circ f^{-1}\right)(x) = \frac{1}{f^{-1}(x)} \Rightarrow \underbrace{\left(f \circ f\right)\left(f^{-1}(x)\right) = \frac{1}{f^{-1}(x)} \Rightarrow \left(f \circ f\right)(x) = \frac{1}{x} }$$