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Abstract. Two algorithms are presented for finding the values that occur more than n + k times 

in an array 6[0 : n - 11. The second one requires time proportional to n * log(k) and extra space 

proportional to k. A theorem suggests that this algorithm is optimal among algorithms that are 

based on comparing array elements. Thus, finding the element that occurs more than n + 2 times 

requires linear time, while determining whether there is a duplicate -the case k = n - requires 

time proportional to n * log n. 

The algorithms may be interesting from a standpoint of programming methodology; each was 

developed as an extension of the algorithm for the simple case k = 2. 

1. Introduction 

We begin by introducing an algorithm that, given an array 6[0: n - 11, 1 c n, 
determines whether there is a majority value -whether any value occurs more than 
n + 2 times in b. The algorithm works in two passes. First, it finds a single likely 
candidate ZI for the majority element; second, it scans b again to count the number 
of occurrences of u to see whether u occurs more than n 12 times. The second 
pass is simple and clearly takes time O(n), and we shall not concern ourselves with 
it further. 

The following algorithm for the first pass, which is clearly linear in IZ, appears 
in [l]. We present it in Dijkstra’s guarded command notation [2,3], along with 
the multiple assignment [3]. A multiple assignment x1, . . . , x,:= el, . . . , e, can be 
executed by determining the variables xi being assigned, evaluating the expressions 
ei, and then assigning the values to the variables in left-to-right order: 

(1) i,c:=O,O; 

doi#n+ 
if zI =b[i] +c,i:=c+2,i+l 
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Oc=i +c,i,u:=c+2,i+l,b[i] 

Oc#ir\u#b[i]+i:=i+l 

fi 

: only ZJ may occur more than n + 2 times in b[O : n- 11) 

Termination is obvious, using the bound function n-i. But how can one under- 

stand that R is true upon termination? The easiest way is to introduce the following 

invariant: 

P: OGiGn 

Avoccursatmostc+2timesinf7[0:i-1]~i~c~ even(c) 

A each other value occurs at most i - c + 2 times in b [0 : i - l] 

P is true after the initialization i, c := 0, 0, no matter what value is initially in U, 

because b [0 : i - l] is empty. And, from the truth of P and the falsity of the loop 

guard i #II upon termination, we conclude that result R holds. The following 

arguments show that P is indeed an invariant, so that the loop is correct. 

Consider the first alternative of the loop body. If guard u = b[i] is true, then v 

occurs one more time in b [0 : i] than it does in b [0 : i - 11. Hence, increasing i by 

1 requires increasing c by 2 so that the upper bound c +2 on occurrences of u 

increases by 1. Note that execution of the command leaves the upper bound i - c + 2 

of the number of occurrences of each other value the same. 

Consider the second alternative. If c = i then i is even and i -c + 2 = i + 2. Hence, 

no value occurs more than i + 2 times in b[O : i - 11. Therefore, the only value that 

might possibly (it need not) occur more than i -+ 2 times in b[O: i] is b[i]. From 

this, it follows that execution of the second guarded command maintains the truth 

of P. 

Finally, it is easily seen that execution of the third command, i := i + 1, when 

guard c # i A v # b[i] is true maintains P. Hence, P is indeed a loop invariant. 

This algorithm and its invariant led us to develop two different algorithms for 

detecting values that could possibly occur more than n + k times in b[O : n - 11, for 

a given k, 2 s k s II. Both algorithms work in two passes: the first pass determines 

a set t of values that may occur more than rr + k times in b ; the second pass scans 

b to determine how many times each value in t actually occurs. The second pass 

can be performed in time O(n log()tl)), and we are interested only in describing 

the first pass. 

2. The first algorithm 

We want to generalize the above problem and algorithm. Given k and n, 2 s k s n, 

and array b [0 : n - 11, we want to find values that may occur more than it + k times 

in 6. For the case k = 2, we were able to identify a single possible value; for the 

more general case, where 2 s k s n, up to k - 1 distinct values may occur more 
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than n + k times in b. The simplest extension of R for the case k = 2 is the following. 

Execution is to store in a set variable l a set of pairs (u, c) such that 

R: (Vv,c:(u,c)~t:~~occursatmostc+ktimesinb[O:n-l] 

~c>n Ak dividesc) 

A each other value occurs at most n t k times in b[O : n - l] 

To develop the algorithm, we choose an invariant P that weakens R in a useful 

manner, using the solution for the case k = 2 for insight: 

~(Vu,~:(~,~)~t:~occursatmostcsktimesinb[O:i-l] 

Ac >i Ak dividesc) 

A any value not the first component of a pair in t 

occurs at most s + k times in 6[0 : i - l] 

hO<sciAkdividess 

P was developed after several different trials. The part concerning set t was fairly 

easy. The difficulty was in discovering a suitable upper bound s + k on the number 

of occurrences of other values. A straightforward extension of the case k = 2 gave 

i -(C U, c: (v, c) E t: c) for this upper bound; this at first seemed reasonable, since 

each distinct value u in t could occur up to c + k times. However, adding a new 

pair (u, c) to t would cause this upper bound to decrease far too much. Variable s 

was introduced simply in the hope that a better upper bound could be computed 

at each iteration, and trial and error led to its definition as given in P. Algorithm 

(2) was developed hand-in-hand with P: 

(2) i, s, t := 0, 0, { }; 

do ifn+ 

Let j be the index of a pair q, cj in t satisfying uj = b[i] 

- if no such pair exists let j = 0; 

ifj=Ohs+kGi+I +i,s:=i+l,s+k 

0 j=OAs+k>i+l +i,t:=i+l,tu{(b[i],s+k)} 

0 j#O +i,cj:=i+l,ci+k 

fi; 

Delete all pairs (vi, cj) from t for which 

cj = i and, if any are deleted, set s to i 

od {RI 

It is clear that the initialization establishes P, that the algorithm terminates, and 

that upon termination the result holds (if P is true). It remains to show the invariance 

of P under execution of the loop body. 

Consider the first alternative of the alternative command. Condition j = 0 means 

that b[i] is not the first component of a pair in c. Hence, there is no need to change 

the counts cj of components in t when i is increased by 1. However, s must be 
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decreased by k so that s + k remains an upper bound on the number of occurrences 

of values not in t. The conjunct s + k s i + 1 ensures that execution maintains s G i. 
Consider the second alternative. Again, j = 0 means there is no need to change 

the counts ci of components in t. However, s cannot be changed as i is increased 

because s s i would be violated. In this case, the component b[i] might occur 

(s + k) + k times in b [0 : i], and so b [i] must be placed in t along with the maximum 

number of times it might occur. 

In the case of the third alternative, b[i] is the first component of a pair (vi, cj) in 

t. Hence, Zlj occurs one more time in b[O : i] than it does in b[O : i - 11, and cj is 

increased accordingly. 

The third statement of the loop body deletes certain members from set t so that 

pairs (vi, cj) of t satisfy cj > i. In this case, however, the upper bound on the number 

of occurrences of values not in t must be changed. Hence the change in s. 

This ends the discussion of the invariance of P. 

The execution speed of algorithm (2) depends on the size and implementation 

of set t. Unfortunately, we have been unable to determine a useful upper bound 

on the size of t. We conjecture that it is a function of k, and not i. We also conjecture 

that t may become its largest if b has roughly the following form: it ends with k 
distinct values, preceded by k + 2 values, each occurring twice, preceded by k + 3 

values, each occurring thrice, etc. Hence, ItI could possibly become as large as 

O(k * log(k)). 

3. The second algorithm 

The second algorithm rests on some extremely simple theory. Consider a bag - i.e. 

a collection of elements, with duplicates possible’ - and consider the operation of 

deleting k distinct elements from it. This operation may be performed several times. 

A k-reduced bag for bag B is a bag derived from B by repeating this operation 

until no longer possible. Note that the k-reduced bag is not unique. For example, 

for bag {1,1,2,3,3}, one can arrive at three different 2-reduced bags using 5 different 

deletion sequences. We show these sequences below; in each bag the elements to 

be deleted next are barred. 

{i, 1,2,3,3}, then {i, %3}, then {3}, 

(7, 1,2,% 3}, then {i, 2,3}, then {3}, 

{i, 1,2,3,3}, then {i,2, g}, then {2}, 

(1, 1,2,3,3}, then {1,2, J}, then {l}, and 

(1, 1, 2,% 3}, then {i, 1, j}, then (1) 

1 We use set notation for bags, e.g. b u {u} denotes the bag consisting of the elements of bag b together 
with the element v. 
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Suppose bag B has N elements. The operation of deleting k distinct elements 

can be performed at most N + k times, for after that the set will contain fewer than 

k elements. Only values that occur in a k-reduced bag for B can occur more than 

N + k times in B ; the other values have been deleted at most N + k times each 

and don’t appear any more, so they could have appeared at most N + k times in 

B. This proves the following theorem: 

Theorem 1. Let bag B contain N items. The only values that may occur more than 

N + k times in B are the values in a k-reduced bag for B. 

Considering b[O : n - l] to be a bag, we use Theorem 1 to develop an algorithm 

as follows. The result assertion is 

R: t isa k-reducedbagfor b[O:n-1] 

A loop invariant is found by replacing constant n by a variable i and introducing 

a second variable d for efficiency purposes: 

P: OSiCn 
A t is a k-reduced bag for b [0 : i - l] 
A d is the number of distinct elements of t 

The algorithm is then written as follows: it should be compared to algorithm (2), 

and it should need no further explanation: 

(3) i, d, t := 0, 0, { }; 
do i#n+ 

if b[i]Ettt,d:=tu{b[i]},d+l; 
if d = k +Delete k distinct values 

from t and update d 
Od<k+skip 
fi 

Ub[i]Et+t:=tu{b[i]) 

fi; 
i:=i+l 

od 

In algorithm (2), we were not able to determine the size of set t. In algorithm (3), 

t has at most k distinct elements, and it has at most k - 1 distinct elements before 

and after each iteration. We will show later how to implement t so that algorithm 

(3) runs in time O(n * log(k)). 

Both algorithms use a bag t of elements. It is only in the definition of t that they 

differ. Both were developed by trying to extend the algorithm for the case k = 2 

given in the Introduction. 
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4. Implementing bag t of algorithm (3) 

Bag t of algorithm (3) has at most n elements and d distinct elements, d s k. 
The operations performed on t and d are: 

1. t := { }. Performed once. 

2. Search t for an element b[i]. Performed 12 times. 

3. Insert an element into t. Performed at most n times. 

4. Delete k distinct elements from t and update d. Performed at most it + k 
times and only when t has exactly k distinct elements. 

We implement t using an AVL tree T with d nodes; each node is a pair (0, ci), 

where Uj is one of the distinct elements of t and cj is the number of times Vj occurs 

in t. This requires O(k) space. 

Operation 1 calls for initializing T to an empty tree - a constant-time operation. 

Operation 2, searching for an element in t, requires time O(log(k)), since T has 

at most k nodes. In total, operation 2 contributes time O(n *log(k)). Operation 

3, inserting an element into t, calls for finding a value in a node j of T and adding 

1 to cj, or, if the element is not in t, adding it with count 1. In any case, the time 

is no worse than O(log(k)), and operation 3 contributes time O(n * log(k)). 

Operation 4, deleting k distinct elements from t when t has exactly k distinct 

elements, calls for subtracting 1 from count cj for each node j of AVL tree T and, 

if cj becomes 0, deleting node j from T. This takes time at most O(k *log(k)). 
Since operation 4 is performed at most n + k times, the total time spent in it is 

O((n t k) * k * log(k)), which is O(n * log(k)). 

Hence, the total time spent in operations dealing with bag t is O(n * log(k)). 

5. On the complexity of detecting repeated elements 

We introduce a decision-tree algorithm (see e.g. [4]) for the problem of determin- 

ing whether any value occurs more than n + k times in 6[0 : n - 11. We show that 

the algorithm takes time O(n * log(k)) (all times given are worst-case times). All 

algorithms for the problem that are based on comparing elements of b can be 

thought of as decision-tree algorithms, which leads to the suggestion that algorithm 

(3) has optimal execution time. 

A decision-tree algorithm for the problem is a decision tree D together with 

algorithm (4), given below; the decision tree D is a finite tree with the following 

characteristics: 

1. Every nonterminal node of D has a label (i, j), where 0 G i, j < n. i and i are 

used to refer to elements b[i] and b[j]. 
2. Every nonterminal node has three branches, with labels < , = and > . 

3. Every terminal node has a label YES or NO. 



Finding repeated elements 149 

4. Given b[O: n - l] and k, execution of algorithm (4) begins with x as the root 

of the tree and terminates with x being a terminal node; the label of x is 

YES if some value occurs more than n + k times and NO otherwise. 

(4) x :=root of D; 

do x is a nonterminal node with label (i, i) + 

b[i] op b[j] must hold, where op is either <, =, or >. Let y be the 

son of node x that is reached via a branch labelled op. Follow the 

branch from x to this son y, i.e. execute x := y 

od 

Execution of algorithm (4) begins at the root of the decision tree and proceeds 

along some path to a terminal node, and the label at the terminal node indicates 

whether a value occurs more than n + k times in b. All algorithms for solving the 

problem that are based on comparing elements of b can be thought of as decision- 

tree algorithms, for they proceed by comparing array elements in some order that 

can be given by a decision tree. Further, decision trees enjoy the advantage that 

the next action following a comparison can depend on afl previous comparisons, 

without incurring the attendant cost. 

As defined, tree D allows the comparisons < , > and = . The same results follow 

if one allows instead only binary trees with labels = and f . 

We now proceed as follows. Let r = n + k. Hence, n + (r + 1) <k c n fr. We 

introduce a set of lists, called r-lists, each with n elements. Each r-list contains a 

list of values that could appear in array b[O : II - l] upon which our algorithms can 

be run. We show (Lemma 1) that there are at least (k/e)” different r-lists.’ Next, 

we show (Lemma 3) that execution of the decision-tree algorithm (with a given 

decision tree) terminates at a distinct terminal node for each assignment of an r-list 

to b. Hence, a decision tree has at least as many terminal nodes as there are r-lists, 

so that the longest path length in a decision tree is at least 

CI(log((k/e)“) = O(n * log(k)-n *log(e)) 

= O(n * log(k)). 

This proves 

Theorem 2. For a given k, Z<k Sn, any algorithm based on comparing array 
elements requires at least O(n *log(k)) comparisons to determine whether some 
value(s) occurs more than n + k times in b[O: n - lJ! 

Definition 1. An r-list is a list of n elements in which each of the values 0, 

1 ,a.., n + r - 1 occurs r times and the value n + r occurs n mod r times. 

’ e is the base of natural logarithms. 
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Lemma 1. There are at least (k/e) n different r-lists. 

Proof. An r-list can be constructed as follows. Choose any r indices out of II and 

store the value 0 there; choose any r indices out of the remaining rr -r possible 

indices and store the value 1 there; . . . ; after r * (n + r)yalues have been stored, 

store the value n + r in the remaining n mod r positions. The number of different 

r-lists corresponds to the number of different possible choices in this procedure, 

which is 

“5:’ ( 
n-i*r 

r ) =rjnt’ * (:!mod r)!’ 

Letx=nmodr.Thenntr=(n-x)/r.So 

rlnir * (a mod r)! = r!(“-x)‘r * x! 

= (/.yx * x ql’r 

s (r jn-* * r !*)l’r (Lemma 2) 
= r!n’r 

< (rr)“lr 
” =r. 

Hence, the number of different r-lists is bounded below by 

n! n! 

r!“-’ * (n mod r)! 
a-- 

r” 

(n/e)” 
3 - 

rn 
(using Stirling’s formula) 

z(k/e)“. q 

Lemma 2. If r>p then r!Pap!‘. 

Proof. Let r = p + q. Then 

r!=p!*(p+l)* 
z-p! *pq. 

tp + 2) * * * * * (P +4) 

Therefore, r!P 2 (p! * pq)’ 
=p!P *(p”)’ 

z-p!P * p!4 

=p.. ” 0 

Lemma 3. Consider a fixed decision tree. Execution of the decision-tree algorithm 
for different r-lists terminates at different nodes. 

Proof. No value occurs more than r times in an r-list; hence, execution of the 

decision-tree algorithm with an r-list terminates at a node labelled NO. Next, define 
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a new list L = Ll * L2 from two different r-lists Ll and L2 as follows: 

L[j] = min(L1 [j), LZ[j]) for 0 G j <n. 

It is obvious that L satisfies the following, for any indices i and j: 

Ll[i]<Ll[j]hL2[i]<L2[j]*L[il<L[jl, 
Ll[i]=Ll[j]hLZ[i]=LZ[j]*L[i]=L[j], (1) 

Ll[i]>Ll[j]hLZ[i]>LZ[j]*L[i]>L[jl. 

Further, we show in Lemma 4 that if Ll and L2 are different then some value 

occurs more than r times in L, so that execution of the decision-tree algorithm 

with input L terminates on a node with label YES. 

Now assume the contrary of the lemma: execution of the decision-tree algorithm 

terminates at the same node x for both Ll and L2. Hence, the executions for Ll 

and L2 follow the same path in the decision tree. By property (l), execution of 

the decision-tree algorithm on list L must follow that same path, and hence must 

end in a terminal node with label NO. Since some value occurs more than r times 

in L, this is a contradiction. Hence, the assumption that Ll and L2 land on the 

same node must be false, and the lemma is proved. 0 

Lemma 4. If r-lists Ll and L2 are different, then a value occurs more than r times 
in L=Ll *L2. 

Proof. Let sl (v) and sZ(v) be the set of indices (positions) in Ll and L2, respec- 

tively, where a value that is at most v appears: 

sl(v)={jlLl[j]Sv}, sZ(v)={jlLZ[j]Gv} 

Since Ll # L2, there is some v satisfying sl (v) # sZ(v). For v an +r, sl (v) = 

sZ(v)= {1,2,..., n}. Hence, for some W, w < rr + r, sl (w) # sZ(w) holds. 

Suppose iEsl(w)usZ(w). Then either Ll[i]Cw or LZ[i]Sw, so that L[i]= 
min(L1 [i], LZ[i]) s w. From the definition of r-list and the fact that w < rz +r, 

Is1 (w)l = (sZ(w)l = (w + 1) * r holds. Since sl (w) # sZ(w), Is1 (w)( u ]sZ(w)] > 

(w + 1) * r. By the pigeon-hole principle, some value that is at most w must appear 

more than r times in L. 0 

6. Finding whether values occur more than r times 

Consider finding values that occur more than r times in b[O: n - 11, where 

1 G r =C n. This problem can be solved in terms of the original problem by taking k 

as the smallest integer satisfying n + k cr.Thus,ifn=lOandr=4,takek=3and 

find a set of values that may occur more than 3, instead of 4, times. Then count 

the number of occurrences in b of each of these values to solve the original problem. 
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If n is not known - e.g. b is implemented as a linked list-then one can first 

search b to determine its length. This takes linear time, so that the algorithm 

remains O(n * log(k)). 
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