Websoft

Yoy P4 J,

& i ‘¢

g 1) N
NANJING UNIVERSITY

3-12 X ERMEEIEEE %

i

TRBE AR IX A I

m Structure in M(x)
We define Taq(z) as a labeled rooted tree with the following properties:

(i) Every vertex v of Tayy) is labeled by a set S, € M(z).

(ii) The root of Ty, is labeled by M(z).

(iii) If v1,...,vm are all sons of a father v in Taq(q), then S, = |J-, S, and
Sy, NSy, =P fori # 3.
{The sets corresponding to the sons define a partition of the set of their
father.}

(iv) For every leaf u of Ty, |Su| < 1.
{The leaves correspond to the feasible solutions of M(z).}

99 99 88 787 6 66 87 67

2023/11/29 2

TREE MR e

m Backtracking

Having the tree Trq(s) the backtrack method is nothing else than a search (the
depth-first-search or the breadth-first-search) in T'yy(). In fact, one does not
implement backtracking as a two-phase algorithm, where T'v(4) is created in
the first phase, and the second phase is the depth-first-search in Tp(;). This
approach would require a too large memory. The tree Taq(s) is considered only
hypothetically and one starts the depth-first-search in it directly. Thus, it is
sufficient to save the path from the root to the actual vertex only.

99 99 88 787 6 66 87 67

2023/11/29 g

TRBE AR IX A I

m Branch-and-bound

Branch-and-bound is nothing else than cutting T, from T's(,) if the algorithm
is able to determine at the moment when v is visited (generated) that T, does
not contain any optimal solutions. The efficiency of this approach depends on
the amount and the sizes of the subtrees of Ts(, that may be cut during the
execution of the algorithm.

99 99 88 787 6 66 87 67

2023/11/29 4

TRIEMEX N x g7

m MAX-SATHJbranch-and-bound
e fN{afbranch? %A{afbound?

B(2y,22,T3,24) = (2 VI2) A () Va3 VT A (T V 22)

ANz VI3V Tg) Ao Vg VTy) A () VT3V Ty4)
AZg N ($1 A% 5.-"4) A (-f]_ VT?,) NIy

{e1}

9 9 99 8 8 78 76 66 87 67 9

2023/11/29 5]

TRIERX N E IR 7Y

m Branch-and-boundfy %3 5 TR ZEH <7

B(2y,22,T3,24) = (2 VI2) A () Va3 VT A (T V 22)
ANz VI3V Tg) Ao Vg VTy) A () VT3V Ty4)
AZg N ($1 A% 5.-"4) A (-f]_ VT?,) NIy

{e1}

{x1 VT2, 21}

x3=0 x3=1

{T1 V 22,23}

2023/11/29 6

TRIERX N EE 717

m Branch-and-boundfy3&E 5B TR &EH X7
m {RBE HMAX-SATI&T—FhF fgbranch-and-bound & 3% 15 ?

B(2y,22,T3,24) = (2 VI2) A () Va3 VT A (T V 22)
ANz VI3V Tg) Ao Vg VTy) A () VT3V Ty4)
AZg N ($1 A% 5.-"4) A (-f]_ VT?,) NIy

99 99 88 787 6 66 87 67

2023/11/29 7

RIEERX B 7Y

m TSPgybranch-and-bound
e fN{afbranch? %A{afbound?

> 12 12 = 14

E24 24

|8(F12, €13, Tas, €23, E:q}l [5[312181:._&15,6:3._82{}1
20 14

2023/11/29 8

PRIBREIX N E R 7157

m TSPgybranch-and-bound

Figure 3.11 shows the application of this branch-and-bound strategy for the
instance I of TSP depicted in Figure 3.10, starting with a precomputed upper
bound 10 on the optimal cost. As introduced in Section 2.3.4 Sy(hq,..., A,

® precompute2 L ERNG?
e Y{aprecompute? .,

> 12 12 = 14

E24 24

|8(F12, €13, Tas, €23, E:q}l [5[312181:.5#,633.54{}]
20 14

2023/11/29 9

REE 4 DU o) @iy tbranch-and-bound & 7415, ¢

MS

SCP
MAX-CL
MAX-CUT
KP

BIN-P

2023/11/29 10

TREEFRRERX N

Assuming P # NP, it is clear that the branch-and-bound method with any
clever polynomial-time algorithmic precomputation of bounds on the cost of
the optimal solutions cannot provide any polynomial-time branch-and-bound
algorithm for a given NP-hard problem. The only profit that one can expect
from this method is that it works within reasonable time for several of the
problem instances appearing in the concrete applications.

Also, if one can precompute very good bounds by some approximation
algorithm, there may exist input instances that have exponentially many fea-
sible solutions with their costs between the optimal cost and the precomputed
bound. Obviously, this may lead to a high exponential time complexity of the
branch-and-bound method.

2023/11/29 11

TRERRIX JLETIE 1 1Y

Since there is no general strategy for searching in T's4(,) that would be the
best strategy for every input instance of a hard problem, one has to concen-
trate on the following two parts of the branch-and-bound method in order to
increase its efficiency:

(i) to search for a good algorithm for getting bounds that are as close as
possible to Opt;;(I) for any input instance I of the optimization problem
U, and

(ii) to find a clever, efficient strategy to compute the bounds on the costs of
the solutions in the set of solutions assigned to the vertices of T .

One can be willing to invest more time in searching for a good bound on
Opt,;(I) (because the derived bound could be essential for the complexity
of the run of the most complex part (the search in T))), whereas the
procedure of the estimation of a bound on a given set of solutions must be
very eflficient because it is used in every generated vertex, and the number of
generated vertices is usually large.

2023/11/29 12

Branch-and-boundE 48T) FH T &R] E [o] gy, ?

m {REEZEME]FIG?

2023/11/29 13

Branch-and-bound E 480)X B T #2/R H) E o) L 7

m {REEZEME]FIG?

5|3
6 1/9|5

~N

Q0
(@)
OV

N
co
W
—t

N
N
(0))

https://en.wikipedia.org/wiki/Sudoku#/media/File:Sudoku_Puzzle_by_L2G-20050714_standardized_layout.svg

2023/11/29 14

TRBE AR IX A I

m Neighborhood

Definition 3.6.1.1. Let U = (X, X0, L, L;, M, cost, goal) be an optimiza-
tion problem. For every x € L, a neighborhood on M(z) is any mapping
[z : M(z) — Pot(M(x)) such that

(i) a € fz{a) for every a € M(x),
(it) if B € fz(a) for some a € M(z), then a € f(3), and
(iii) for all a, 3 € M(x) there exists a positive integer k and vy, . ..,y € M(z)
such that vy € fz(@), vit1 € fo(w) fori=1,...,k—1, and B € f.(v).

If a € f.(B) for some a, B € M(z), we say that o and 3 are neighbors in

M(x). The set fo() is called the neighborhood of the feasible solution
a in M(z). The (undirected) graph

G M) 1. = M(2), {{a, B} a € fo(B),a # B,, 8 € M(2)})

is the neighborhood graph of M{(x) according to the neighborhood
fe.

Let, for every z € Ly, f, be a neighborhood on M(z). The function f :
User, {2} x M(2)) = U, ¢y, Pot(M(z)) with the property f(z,a) = fo(a)
for every x € L1 and every o € M(z) is called a neighborhood for U.

2023/11/29 15

TRBE AR IX A I

m Neighborhood graph
o XANERBFMRLEMR?

m Local transformation
o {REEZNHIFIL?

m Local optimum

2023/11/29 16

TRBE AR IX A I

m Neighborhood graph
o XANERBFMRLEMR?

m Local transformation
o {REEZNHIFIL?

m Local optimum

Definition 3.6.1.4. Let U = (X}, Yo, L, L1, M, cost, goal) be an optimiza-
tion problem, and let, for every x € Ly, the function f, be neighborhood on
M(z). A feasible solution a« € M(x) is a local optimum for the input
instance x of U according to f., if

cost(a) = goal{cost(3)| B € f.(a)}.

2023/11/29 17

TRIERX N E IR 7Y

LSS{Neigh)-Local Search Scheme according to a neighborhood Neigh

Input: An input instance z of an optimization problem U.
Step 1: Find a feasible solution & € M(zx).
Step 2: while o ¢ LocOPT (z, Neigh,) do
begin find a 3 € Neigh,(a) such that
cost(3) < cost(a) if U is a minimization problem and
cost(3) > cost{a) if U is a maximization problem; a := /3
end
Output: output(a).

2023/11/29 18

TRIERX N E IR 7Y

LSS{Neigh)-Local Search Scheme according to a neighborhood Neigh

Input: An input instance z of an optimization problem U.
Step 1: Find a feasible solution & € M(zx).
Step 2: while o ¢ LocOPT (z, Neigh,) do
begin find a 3 € Neigh,(a) such that
cost(3) < cost(a) if U is a minimization problem and
cost(3) > cost{a) if U is a maximization problem; a := /3
end
Output: output(a).

Theorem 3.6.1.5. Any local search algorithm based on LSS(Neigh) for an
optimization problem U outputs, for every instance x of U, a local oplimum
for x according to the neighborhood Neigh.

2023/11/29 19

TRIERX N E IR 7Y

LSS{Neigh)-Local Search Scheme according to a neighborhood Neigh

Input: An input instance z of an optimization problem U.
Step 1: Find a feasible solution & € M(zx).
Step 2: while o ¢ LocOPT (z, Neigh,) do
begin find a 3 € Neigh,(a) such that
cost(3) < cost(a) if U is a minimization problem and
cost(3) > cost{a) if U is a maximization problem; a := /3
end
Output: output(a).

m Local searchif§RE/ME SRR ITRZF X

2023/11/29 20

PRIBREIX N EE T
o Tt ¢ d
NG

2023/11/29 21

RIEBIX A 117

. L
C D QD the size of the‘neighborhood 2-E:cchange(&) is ﬂ,;_41
C---d : y
emd € d
J W
e b ¢ 1

2023/11/29 -

PRIBREIX N EE T
ol ¢ d
NG

= {REELLRENMNILS LY

2023/11/29 23

PRE8EH AT (8] 2 X neighborhoodfd, 7

m MAX-SAT
m MAX-CUT

MS

SCP
MAX-CL
KP
BIN-P

2023/11/29 24

TREEREREX N

LSS{Neigh)-Local Search Scheme according to a neighborhood Neigh

Input: An input instance z of an optimization problem U.
Step 1: Find a feasible solution & € M(zx).
Step 2: while o ¢ LocOPT (z, Neigh,) do
begin find a 3 € Neigh,(a) such that
cost(3) < cost(a) if U is a minimization problem and
cost(3) > cost{a) if U is a maximization problem; a := /3
end
Output: output(a).

Theorem 3.6.1.6. Let U = (Xo,X;,L, L1, M, cost, goal) be an integer-
valued optimization problem with the cost function cost from feasible solu-
tions to positive integers. Let there exist a polynomial p such that cost(a,x) <
p(Maz-Init(x)) for every x € Ly and every o € M(x). For every neighbor-
hood Neigh such that Neigh,(a) can be generated from a and z in polynomial
time in |z| for every x € Ly and every a € M(z), LSS(Neigh) provides a
pseudo-polynomial-time algorithm that finds a local optimum according to the
neighborhood Neigh.

2023/11/29 25

RIERRX e 1 1Y

neighborhood. If a neighborhood Neigh has the property that Neigh(a) has

a small cardinality for every a € M(z), then one iterative improvement of
Step 2 of LSS(Neigh) can be executed efficiently but the risk that there are
many local optima (potentially with a cost that is very far from Opty;(x)) can
substantially grow. On the other hand, large |Neigh,(a)| can lead to feasible
solutions with costs that are closer to Opty;(x) than small neighborhoods can,
but the complexity of the execution of one run of the while cycle in Step
2 can increase too much. Thus, the choice of the neighborhood is always a
game with the tradeofl between the time complexity and the quality of the
solution. Small neighborhoods are typical for most applications. But a small
neighborhood alone does not provide any assurance of the efficiency of the local
search algorithm, because the number of runs of the while cycle of the local
search scheme can be exponential in the input size. We can only guarantee a

2023/11/29 26

TRIERX N E IR 7Y

KL{Neigh) Kernighan-Lin Variable-Depth Search Algorithm with
respect to the neighborhood Neigh

Input: An input instance I of an optimization problem U.

Step 1: Generate a feasible solution a = (p1,p2,...,Pn) € M(I) where (p1,
Pa,...,Pn) is such a parametric representation of a that the local
transformation defining Neigh can be viewed as an exchange of a few
of these parameters.

Step 2: IMPROVEMENT = TRUE,

EXCHANGE :={1,2,....n}; J:=0; ay =

while IMPROVEMENT = TRUFE do begin

while EXCHANGE # {) do
begin J:=J +1;
ay 1= asolution from Neigh(aj_1) such that gain(aj_, 0)
is the maximum of
{gain(aj_1,0) |6 € Negh(ay_1) — {@s-1} and & differs
from ay_, in the parameters of EXCHANGE only}:
EXCHANGE := EXCHANGE—{the parameters in which
oy and a sy differ}

end;

Compute gain{a,ay) for i =1,...,J;

Compute ! € {1,...,.J} such that

gain{a, ay) = max{gain{a, a;)|i € {1,2,...,J}};

if gain(a, o) > 0 then
begin o := ay;
EXCHANGE := {1,2,...,n)

end
else IMPROVEMENT := FALSE «. The main idea of the above-described approach is that a few steps in
end the wrong direction (when gain(a, a1), gain{a,, az), . .., gain(a,, a-41) are all
Step 3: output(a). negative) may ultimately be redeemed by a large step in the right direction

(gain(ar, @rs1) > |3 1. gain(a;, aip1)|, for instance).

2023/11/29 27

TRIEMEX N x g7

B [n numerical analysis, hill climbing is a mathematical optimization
technique which belongs to the family of local search. It is an
iterative algorithm that starts with an arbitrary solution to a problem,
then attempts to find a better solution by making an incremental
change to the solution. If the change produces a better solution,
another incremental change is made to the new solution, and so on
until no further improvements can be found.

a. Neigh. [?
m REEIATSP I, % H— B A EED?
m BTG

LSS(Neigh)-Local Search Scheme according to a neighborhood Neigh

Input: An input instance x of an optimization problem I
Step 1: Find a feasible solution & € M(z).
Step 2. while a ¢ LocOPTy (z, Neigh,) do
begin find a 3 € Neigh,(a) such that
cost(8) < cost(a) if U is a minimization problem and
cost(8) > cost(a) if U is a maximization problem; & := 3
end
Output: output(a).

2023/11/29 28

TRIEMEX N x g7

m For a very large-scale neighborhood search, the neighborhood is
large and possibly exponentially sized.

m #8Ekhill climbing, (3 Ta. Neigh. ?
m {RBEMTSP A, 5 —1EEWNEEL?
m Uy T IL?

LSS(Neigh)-Local Search Scheme according to a neighborhood Neigh

Input: An input instance x of an optimization problem I
Step 1: Find a feasible solution & € M(z).
Step 2. while a ¢ LocOPTy (z, Neigh,) do
begin find a 3 € Neigh,(a) such that
cost(8) < cost(a) if U is a minimization problem and
cost(8) > cost(a) if U is a maximization problem; & := 3
end
Output: output(a).

2023/11/29 29

TRIEMEX N x g7

m Multi-start methods: re-start the procedure from a new solution
once a region has been explored.

m #8Ekhill climbing, (3 Ta. Neigh. ?
REEVLTSP A, G —1PEENEERL?
m Uy T IL?

LSS(Neigh)-Local Search Scheme according to a neighborhood Neigh

Input: An input instance x of an optimization problem I
Step 1: Find a feasible solution & € M(z).
Step 2. while a ¢ LocOPTy (z, Neigh,) do
begin find a 3 € Neigh,(a) such that
cost(8) < cost(a) if U is a minimization problem and
cost(8) > cost(a) if U is a maximization problem; & := 3
end
Output: output(a).

2023/11/29 30

TRIEMEX N x g7

m Stochastic hill climbing chooses at random from among the uphill
moves; the probability of selection can vary with the steepness of
the uphill move.

m #gtkhill climbing, 24 Ta. Neigh, f?
REEATSP AR, HBE— N BEENEELD?
m EOgyF 7Y

LSS(Neigh)-Local Search Scheme according to a neighborhood Neigh

Input: An input instance x of an optimization problem I
Step 1: Find a feasible solution & € M(z).
Step 2. while a ¢ LocOPTy (z, Neigh,) do
begin find a 3 € Neigh,(a) such that
cost(8) < cost(a) if U is a minimization problem and
cost(8) > cost(a) if U is a maximization problem; & := 3
end
Output: output(a).

2023/11/29 31

OT

= FRMAX-SATMTSPS), 933 G SHANEERIE R E LR o] T fR R
HEBR, HEAGMEKEHEDIFTINBRAEE, &5
BIF M REERIRIT ST

2023/11/29 EY)

	3-12 分支定界和局部搜索算法
	你能解释这些概念吗？
	你能解释这些概念吗？
	你能解释这些概念吗？
	你理解这个算法了吗？
	你理解这个算法了吗？
	你理解这个算法了吗？
	你理解这个算法了吗？
	你理解这个算法了吗？
	你能为以下问题设计branch-and-bound算法吗？
	你能解释这个算法的时间复杂度吗？
	你理解这几段讨论了吗？
	Branch-and-bound思想可以用于解决判定问题吗？
	Branch-and-bound思想可以用于解决判定问题吗？
	你能解释这些概念吗？
	你能解释这些概念吗？
	你能解释这些概念吗？
	你理解这个算法了吗？
	你理解这个算法了吗？
	你理解这个算法了吗？
	你理解这两个算法了吗？
	你理解这两个算法了吗？
	你理解这两个算法了吗？
	你能为以下问题定义neighborhood吗？
	你能解释这个算法的时间复杂度吗？
	你理解这段讨论了吗？
	你理解这个算法了吗？
	你理解这个算法了吗？
	你理解这个算法了吗？
	你理解这个算法了吗？
	你理解这个算法了吗？
	OT

