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Abstract. Mellin transforms and Dirichlet series are useful in quantifying period- 
icity phenomena present in recursive divide-and-conquer algorithms. This note 
illustrates the techniques by providing a precise analysis of the standard top- 
down recursive mergesort algorithm, in the average case, as well as in the worst 
and best cases. It also derives the variance and shows that the cost of mergesort 
has a Gaussian limiting distribution. The approach is applicable to a number 
of divide-and-conquer recurrences. 

Many algorithms are based on a recursive divide-and-conquer strategy of splitting 
a problem into two subproblems of equal or almost equal size, separately solving 
the subproblems, and then knitting their solutions together to find the solution 
to the original problem. Accordingly, their complexity is expressed by recur- 
rences of the usual divide-and-conquer form 

where the initial condition,f, , and the ‘‘knitting costs”, e,, depend on the prob- 
lem being studied. Typical examples are mergesort, heapsort, Karatsuba’s multi- 
precision multiplication, discrete Fourier transforms, binomial queues, sorting 
networks, etc. It is relatively easy to determine general orders of growth for 
solutions to these recurrences as explained in standard texts, see the “master 
theorem” of [6, p. 621. However, a precise asymptotic analysis is often apprecia- 
bly more delicate. 

At a more detailed level, divide-and-conquer recurrences tend to have solu- 
tions that involve periodicities, many of which are of a fractal nature. It is 
our purpose here to discuss the analysis of such periodicity phenomena while 
focussing on the analysis of the standard top-down recursive mergesort algo- 
rithm. For example, as we shall soon see, the average cost of running mergesort 
on n keys satisfies 

u (n) = n lg n + nB (lg n) + 0 (n) , 
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Algorithm MergeSort(a[l . . . n] ) ;  
if ( n  > 1) then 

{ Mergesort (u[1 . . Ln/2j]); 
Mergesort ( a [  [n/2J + 1 . .n]); 
Merge (a[l . . . [n/21] , a[ [n/2J + 1 . . . n] , a[l . . . n] ) ; }  

Fig. 1. Top-down recursive mergesort 

where B ( x )  is a fractal-like periodic function. Similarly, the variance of the cost 
of mergesort is 

v(n)=nC(lg n)+O(n) ,  

where C(x) is also a fractal-like periodic function. 
The methods employed - Mellin transforms, Dirichlet series, Perron's formu- 

la - borrow from classical analytic number theory [4]. Related problems with 
emphasis on digit sums and exact summatory formulae are discussed in [ 111. 

In Sect. 1 we quickly review the mergesort algorithm and derive the equations 
that describe its behavior. In Sect. 2 we introduce the analytic tools that we 
will use and then utilize them to develop a general technique for deriving precise 
asymptotics of divide-and-conquer recurrences. In Sect. 3 we apply this general 
technique to quickly (re)derive the (already known) worst and best case costs 
of mergesort. In Sect. 4 we apply the technique to derive the average case cost 
of mergesort. In Sect. 5 we discuss the actual distribution of the cost of mergesort, 
analyzing its variance and proving that it has a Gaussian limiting distribution. 
We conclude the Sect. 6 by briefly sketching some other possible uses of our 
general technique. 

In what follows we set lg n =log2 n, and use the standard notation for frac- 
tional parts, {u]  = u - Lu J. 

A preliminary version of this paper has been presented at the 20th ICALP 
Conference [ 1-01. 

1 Mergesort 

Mergesort (Fig. 1 and see [lS,  p. 1651 for a fuller description), sorts a file 

of n elements by (a) splitting it into two parts of sizes and I:] respectively, 

(b) recursively mergesorting the two subfiles, and then (c) merging the two sorted 
subfiles together. The recursion terminates when n = 1, because a file with one 
element is already sorted. The cost, in number of comparisons performed by 
mergesort, satisfies the canonical divide-and-conquer recurrence 

f n  =fi"/2J +frn,2, + en 9 >= 2, fl = 3 

where the actual values of the e,, the costs of the merges, depend upon whether 
it is the worst, best or average case that is being analyzed. 

For a better understanding of the values of the e,  we require a deeper under- 
standing of the mechanics of the merging procedure itself. Suppose A 
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Procedure Merge(A, B, 0); 

p = s i ze(A);  u = s i ze(B);  
while ( ( p  > 0) and ( v  > 0) ) do 

[Merges sorted lists A and B into list C 
and then copies the result into list D.] 

[Compare laagest elements in each list] 
if ( A M  > B[vl) 

then {C[p -+ v] = A [ p ] ;  
else {C[p -+ u] = B[v];  v = v - 1;) 

[Move contents of nonernpty list over to  C] 
s = p + v ;  
if (14 > 0) 

= p - I;} 

then for i = S downto 1 do C[i]  = A[i]; 
else for i = S downto 1 do C[i]  = B[i];  

for i = 1 to ,LL -+ u do D[i]  = C[i] ;  [Copy C into 0.3 

Fig. 2. The merging procedure. It works by successively comparing the largest remaining ele- 
ments in A and B 

= [a , ,  . . . , aP] and B= [b,, .. . , b,] are two lists of numbers, both already sorted 
in nondecreasing order. The procedure Merge@, B, D) as described in Fig. 2 
merges the two sorted lists to form a new sorted list C=[c, ,  ..., cP+,] whose 
elements are those of A u B  and then copies this list into list D. It does this 
by comparing the largest element in A to the largest element in B, removing 
the maximum of the two from the list in which it is located, and placing it 
in C. It then compares the largest remaining element in A to the largest remaining 
element in B and again removes the maximum, this time inserting it into the 
second largest spot in C. It continues this process of comparing the largest 
remaining elements in the two lists against each other, removing the maximum 
and concatenating it to the back of C, until one of the two lists is empty. 
It then moves all of the elements from the non-empty list over to the back 
of C. Since the elements remaining on the non-empty list are all smaller than 
the ones that have already been moved and also, are all already in sorted order, 
moving them over to C requires no further comparisons. In fact, if a list-based, 
as opposed to an array-based, merge is used, we can move all of the remaining 
items over to C simply by changing the address in one pointer. 

The cost, in number of comparisons, of merging a size p list with a size 
v one, what we call a (p,  v )  merge, is p+v-S,  where S is the number of elements 
left on the non-empty list at the end of the procedure. 

We now proceed with the analysis of mergesort. The top-level merge per- - 

formed by the algorithm is a (I;], I;]) one. In the worst case S =  1 so T(n), 

the worst case behavior of mergesort, satisfies 

The best case of a ( p , v )  merge occurs when all of the items in the larger 
file are bigger than all of the items in the smaller one and S=max(p, v). The 
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best case of the (I;], I;]) merge then uses n- - = - comparisons so, ~ ( ~ 1 ,  '"1 2 
the best case behavior of mergesort satisfies 

This occurs, for example, when the numbers 1 ... n are in the file in inverted 
order. 

The average case is much more interesting. Our derivation follows that of 
[14, p. 6201. To study the average case we assume that the p+ v elements in 

A u B are the integers 1 ... p+ v and, further, that each of the ("3 possible 

partitions of the numbers into sorted lists A and B are equally likely. Recall 
that S is the number of items left in the nonempty list by the merging procedure; 
these items are the S smallest items in A u B .  Thus S z s  if and only if one 
of the two lists A or B contains all of the s smallest items and 

The first summand is the probability that 1 ... s are all in B, the second that 
they are all in A. 

Summing over all s we find 

where E (  ) is the expectation operator. 
We can now analyze the average case behavior of mergesort assuming that 

the file a [l . . . n] contains a permutation of 1 . . . n and that each of the n ! permuta- 
tions is equally likely. Because the permutations are all equally likely each parti- 

tion into the sets a [ 1 ... I;]] and a [I;]+ 1 . . . n] is also equally likely to occur 

and therefore the analysis of the preceeding few paragral hs shows that the 

average number of comparisons performed by the top 
where 

Y n  = 

21) merge is n - y n  
2 

The fact that the original permutation was random means that the subfiles 

a [ 1 . . . I;]] and a [ I;] + 1 . . . n] are also random permutations of the elements 
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that they contain and we can therefore apply the same analysis as above to 
the subfiles. The average case number of comparisons performed by mergesort, 
~ ( n ) ,  thus satisfies 

w e  can also derive a divide-and-conquer recurrence for the variance of merge- 

sort. First note that the variance, 6, of the cost of the topmost 
can be calculated from (1) to be [ 14, ex. 5.2.4-23 

The total cost of mergesort is the sum of the costs of the (n- 1) individual 
merges performed by the algorithm. The cost of the topmost merge only depends 

upon the particular partition of the input set into a 1 ... - and a - + 1 ...YE . 
The costs of the recursive mergesorts on the two subfiles only depend upon 
the initial permutation of the elements in each of the two subfiles; these are 
independent of the actual items in the files. The cost of the topmost merge 
is therefore independent of the costs of all of the other merges. Also, the costs 
of all of the merges in the ‘‘left” subfile are independent of the costs of the 
merges in the ‘‘right’’ subfile because these costs are only functions of the internal 
permutations of their respective subfiles and the internal permutations of the 
“right” subfile is independent of that of the ‘‘left” one. Summarizing, we find 
that the costs of the n- 1 merges that together compromise the mergesort are 
independent random variables. It follows that the variance of mergesort, the 
variance of the sum of the costs of the individual merges, is the sum of their 
variances and thus satisfies 

[ Lsll [ L l  I 

To review and preview: we have shown that the worst case T(n), best case 
Y(n), and average case U(n)  costs of mergesort all satisfy a divide-and-conquer 
recurrence of the form 

where the actual values of e, = 0 (a) depend upon the particular problem being 
studied. We will soon see that for each of these problems there exists a different 
periodic function P(x)  with period 1 such that 

fn = n lg n + nP(1g n)+ O(1). 

The variance V(n), also satisfies an equation of the form (2) but with en = O( 1). 
we will see that its solution has the periodic term not in the second order 
asymptotics but in the leading term withf, = nP(1g n) + o(n). 
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Fig. 3. The fluctuation in the worst case behavior of Mergesort, in the form of the coefficient 
1 of the linear term -[T(n)- n lg n] as a function of lg n = log, n for n = 32.. .256. From Theo- 
n 

rems 1 and 2, the periodic function involved, A(u), fluctuates in [ - 1, -0.913921 with mean 
value a, = -0.94269 

The periodic functions which arise in the analysis of most divide-and-conquei 
recurrences can be quite complicated, even fractal-like, and need special analytic 
tools to be studied. The case of T(n), in which en= n- 1, is simple enougf 
that it can be analyzed directly. We present such a simple analysis below wit1 
the intention of giving the reader, in a setting unencumbered by heavy machinery 
some intuition as to where these periodic terms arise. 

The precise behavior of T(n) is essentially known. The main term is n lg I 

and T(n) also contains a simple periodic function in lg n. The periodicities arl 
apparent from Fig. 3 with “cusps” whenever lg n is an integer. 

Theorem 1 The worst case cost T(n) satisfies 

T(n) = n lg n + nA (lg n) + 1 , 

where A(u )  is the periodic function 

A (u) = 1 - { U] - 2 - W. 

Proof. It is easy to check that 
n w)= c rig k i  

k = l  
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(See [13, p. 4001, where a closely related function is discussed.) The statement 
then follows from writing 

rig n l  =ig n+ 1 - {ig n>, 

for any n not a power of 2. 

Knuth analyzes a bottom up version of Mergesort in the average case (Algo- 
rithm L, see [14,5.2.4 and 5.2.4-13]), when n is power of 2. Knuth's analysis 
is also valid for top down recursive Mergesort in this special case. When n = 2", 
the recurrence for U(n)  can be unfolded to derive 

0. 

where 
u ( 2 9  = n lg n + p n + 0 (n) , 

1 
1 p= c 2j+1- - - 1.26449 97803. 

j z  0 

For general n, no such formula is known. (See however Eq.(17) in the proof 
of Theorem 4 for a related formula.) In what follows we will outline an approach 
that permits the analysis of mergesort type recurrences and demonstrate it by 
analyzing U (n). 

2 The mergesort recurrences 

We saw in the previous section that T(n), the worst case cost of mergesort, 
is easy to analyze because it satisfies a trivial divide-and-conquer recurrence. 
Most such recurrences are not as easy to attack, though. In this section we 
introduce a new approach to the analysis of divide-and-conquer recurrences 
of the mergesort type, one that works via the computation of certain associated 
Dirichlet series. 

Let {wn}  be a sequence of numbers. The Dirichlet generating function of 
w, is defined to be 

co 

W(s)= 5. ns n = l  

The coefficients of Dirichlet series can be recovered by an inversion formula 
known as the Mellin-Perron formula which belongs to the galaxy of methods 
relating to Mellin transform analysis. 

Lemma 1 (Mellin-Perron) Assume the Dirichlet series W(s) converges absolutely 
for %(s) > 2. Then, 

(3) 

Proof For completeness, we sketch the proof of this classical result. See [4] 
for a closely related result. For the more general version and its relation to 
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Mellin inversion, see 
consider the integral 
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for example [11] and references therein. Take x>O and 

By closing the line of integration by a large semi-circle to the left (when x 2  1) 
or to the right (when x 5 l), and taking residues into account, we find that 

- 

J(x)=(O 
if x l l  

1-x-l  if x z 1 '  

The left hand side of Eq.(3) is therefore equal to 

and the proof of the lemma follows. 0 
An iterated sum 

n - 1  n - 1  k 

k =  1 k = l  Z=1 

of coefficients of a Dirichlet series is thus expressible by an integral applied 
to the series itself. 

In order to recover the mergesort quantities T(n) and U(n),  we determine 
the Dirichlet series of their second differences. Then we use the Mellin-Perron 
formula to derive an integral representation of the given quantity. We conclude 
by evaluating the integral via the residue theorem. As in other Mellin type 
analyses, this provides an asymptotic expansion for the quantities of interest. 

This technique, which is familiar from analytic number theory, is analogous 
to a common technique in combinational counting. In the latter case, generating 
functions are ordinary, their singularities play a crucial rble, and the asymptotic 
behavior of the coefficients of the power series is found by utilizing the Cauchy 
integral formula. 

We now derive the general method for analyzing standard divide-and-con- 
quer recurrence schemes 

for n z 2 ,  where e, is a known sequence andf, is the sequence to be analyzed. 
An initial condition fixing the value fl is also assumed. In order to make the 
notation unambiguous we formally set e, = f, =e l  = 0. The functions T(n) and 
U(n)  both satisfy this scheme: for T(n), e n = n - l  and for U(n), e,=n-y,. 

Distinguishing between odd and even cases, we find that for m>O 
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Taking backward differences with Vfn =fn -fn - and V e, = e, - en - yields 

for m>0. We use the symbols V g ,  to denote ( V g ) m .  For example, Vf2m+1 
= ( V f ) z m +  1 - Taking forward differences of the preceding quantities, A Vf, 
=Vh+l-Vfnand AVe,=Ve,+l-Ve,, wearrive at 

(7) 

for m 2 1, with A Vfl =f2  - 2f1 = e2 = A V e l .  We use the symbols A V g m  to denote 
( A  v g ) m *  For example, A V f 2 m +  1 =(A V f ) 2 m +  1. 

Define the Dirichlet generating function corresponding to w, = d Vf,, 

AVfn W(s)= c -. 
ns n = l  

Then, multiplying w, by n-', summing over all n, and using (7) we find 

AVe, W(s) * AVe, co 

A V f m + A V f l +  -- -7+ c -* ns n = l  W)= m = l  c n = 2  ns 

n - 1  

Solving for W(s), we attain an explicit form for W(s). Since (n-k)  A Vfk=fn 

- nfl the Mellin-Perron formula yields a direct integral representation of f,. 
We summarize the above discussion in: 

k = l  

Lemma 2 Consider the recurrence 

for n 2 2, with f l  given and e, = O(n). The solution satisjies 

where 
AVe, 

S(S)= c - 
."S * ri n = l  

(The growth condition on e, ensures existence of associated Dirichlet series 
when %(s)>2, in accordance with the conditions of Lemma 1.) 

Equation (8) provides an exact solution forf, in terms of the given quantities 
fl and ei,  i = 1,2, . . . . The integral in the equation can frequently be analyzed 
using standard techniques yielding a precise asymptotic expression for fn . We 
will now see some examples of this process. 
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3 Worst and best case analyses 

In Sect. 1, Theorem 1, we used elementary techniques to derive an exact equation 
describing the worst case number of comparisons performed by mergesort, In 
this section we show how Lemma 2 can be utilized to rederive the same result. 
We do this for two reasons: the first is that it is a very clear illustration of 
how to apply the lemma unencumbered by analytic complications. The second 
is that we need this result, which expresses the cost as a Fourier series, in 
the next section where we derive the average case cost of the algorithm. TO 
conclude this section we briefly sketch how to derive the best case cost of merge- 
sort. 

Theorem 2 Let 

be the worst case cost of mergesort. Then T(n) satiJies 

T ( n )  = n lg n + n A(1g n) + 1 

where A(u) is a periodic function with mean value 

1 1  
2 log2 a, = - - - = - 0.94269 50408 , 

and A(u) has the explicit Fourier expansion, 

where, for kEZ\(O}, 

2 i k n  with Xk=- 
1 1 

log2 * 
ak =- 

log X k  ( X k  + 'I 

The extreme values of A(u) are 

= -0.91392, and - 1. - 1+loglog2 
log 2 

Proofi We apply Lemma 2 with f,= T(n). For this case we have e, = n-  1 and 
f l = O s o d V ~ l = e , = l  andAVen=Ofora l ln~2.ThusB(s)=1 and 

(9) 
1 3 + i a  ns d s  L- 

n 2in J - i o o  1 1-2-s S ( S + l ) '  
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I (s )  ds  s I (s)ds  

I r2 

54n". 

I 

r 4  

r3 

-1 
___c - 1 

Fig. 4. The two contours employed in the proofs of Theorem 2 (left) and Theorem 3 (right). 
Singularities are represented by dots. Note that the contour on the left contains the singularity 
at - 1 while the contour on the right does not 

We can evaluate this integral using the residue theorem. Fix a< - 1. Let R>O 
and r be the counterclockwise contour around u 4 u & u where' 

& = (3  + i y  : l y l s  R) 
4 = {x+ i R : a  s x  5 3) 

& = { a  + i y  : Iyl R )  
& = {x- iR:a s x 5 3) .  

to be the kernel of the integral in (9). 
ns 1 (See Fig. 4.) Set I ( s )=  

1 -2-s s(s+ 1) 
1 

2in 
Letting Rf  co we find that - s I(s)ds becomes the integral in (9), I 1 I(s)dsl 

and I s I (s )  dsl are both O(1/R2) and 
r2 

r4 
I I l a - i a ,  I 

We further assume that R is of the form ( 2 j +  1) n/log 2 for integer j ,  so that the contour 1 

passes halfway between poles of the integrand. 
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The residue theorem therefore yields that f , / n  equals O(na) plus the sum of 
the residues of I ( s )  inside r. 

We can actually do better. Since I ( s )  is analytic for all s with %(s)< -1 
we may let a go to -a getting progressively smaller and smaller error terms. 
This shows that h / n  is exactly equal to the sum of the residues of I ( s )  inside 
r. The singularities of I ( s )  are 

.I . 
1 1 1. A double pole at s = 0 with residue lg n + - -- 
2 log2'  

1 
n 

2. A simple pole at s = - 1 with residue -. 
3. Simple poles at s=2kin/log 2, keZ\(O] with residues ak e2 ikx1gn .  
Thus, as promised, we have shown that 

T(n)  = n lg n + nA (lg n) + 1 , 

where A(u) is defined by the designated Fourier series. This Fourier series is 
uniformly convergent because ak = 0 ( l/k2). 

The extreme values of A(u) are calculated using standard techniques. Iz) 

We note that a computation of the Fourier series of A(u) directly from Theorem 1 
is also feasible and in fact yields the Fourier series derived in the l'ast theorem 
(providing a convenient check on the validity of the theorem). 

To analyze the best case behavior recall, from Sect. 1, that Y(n), .the best 
case number of comparisons performed by mergesort, satisfies the divide and 
conquer recurrence : 

Let v(n) denote the sum of the digits of n represented in binary, for instance 
v(13)= v([1101],)= 3. Then by comparing recurrences, we find that 

Y(n)= v(m). 
m < n  

Equation (11) has been already noticed by several authors (see, e.g., [3]). The 
function Y(n) has been studied by Delange [7] using elementary real analysis. 
It can also be subjected to the methods of this paper by applying Lemma 2 

with en=Ln/2J and E")= -= (-lY+l/ns. Since Y(n) has been so 

well studied we do not go into the details of how to evaluate the integral here 
but, instead, refer the interested reader to [ll] for a discussion of how to analyze 
this integral in particular and exact summatory formulae in general. The result 
is 

AVe,  

n z  1 ns n z l  

Theorem 3 The best case cost Y(n) satisfies 

Y(n)=+  n lg n+nD(lg n), 
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-0.6 

-0.8 

10 8.5 Q a 

I-’ 

Fig. 5. The clearly fractal fluctuation in the best case behavior of mergesort, graphing the 

coefficient of the linear term using a logarithmic scale for n = 256.. .lo24 n 

where D(u)  is a periodic function of period 1, D(u)= dk  e2ikau hai Fourier coeffi- 
cients kcZ 

1 -- 1 do  =lg f i -  
2log2 4 ’  

([(s)= 

Delange [7] has proven that the periodic function D ( x )  is everywhere continuous, 

l /ns  is the Riemann Zeta function.) 
fill 

but that it is not differentiable at the dense set of points : p ,  r E Z +  u (0)  

4 Average case analysis 

We now proceed with the major result of this paper, the analysis of the average 
number of comparisons performed by mergesort, U (n). 
Theorem 4 Let U(n)  be the function which counts the average number of compari- 
sons performed by mergesort, where 
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for n z 2 ,  with U(l)=O, and 

Y n  = 
El , 

[;]+I 

Then the following is true: 
(i). The average case cost U(n) of mergesort satisfies 

U(n) = n lg n + nB(1g n) + 0(1), 

where B(u) is a periodic function with period 1. Furthermore, B(u) is everywhere 
continuous, but it is not differentiable at the dense set of points 

(ii). The mean value bo of B(u) equals 

2 
l f  

1 1 
2 log2 1 0 g 2 ~ , ~ ( r n + l ) ( m + 2 )  
----- 

Numerically, 
bo = - 1.248 15 20420 99653 88489.. . 

(iii). B(u)= bk e2ikxu where the Fourier coefficients of B(u) are, for kEZ\{O}, 
ksZ 

and 

The Fourier series is uniformly convergent to B(u). 
(iv). The extreme values of B(u) are 

,l?= - 1.26449 97803.. . and - 1.24075 0572_+ lo-'. 

Pro05 The proof follows the paradigm laid down by Theorem 4. We first use 
Lemma 2 to derive an integral form for fn= U(n) and then use residue analysis 
to evaluate the integral. 

For f n =  U(n) we are given fl =O and d Vfl =e2= 1. We are also given that 
for all m>O 

2 le,, =2m-2+- m + l  
2 '  

e2,+,=2m-1+- 
m+2 
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= A 
2 

(m + l)(m + 2) 
-AC7ezm= 

Summing over all m we may write 

O0 A V e ,  
E(s)=APf1+ s= 1 + Y(s) n n = 2  

where 
2 a, 

m = l  

converges absolutely and is 0 (1) on any imaginary line %is) = a 2 - - 1 + E. Lem- 
ma 2 therefore tells us that 

f n  1 3+ico ns d s  
n 2 in3- ia ,  1 1-2-s s(s+l)* 
_- -- 

ns Y(s) ds  1 3+ico 

+- 21n 3-ior ,  1 1-2-s s(s+l) '  

The first integral on the right-hand side was already evaluated during the proof 

of Theorem 2 and shown to be equal to lg n+A(lg n)+- where A(u) 1 
n =c ak e2iknu* 

k 

The second integral can be evaluated using similar techniques. Let E > O  
and fix a= - 1 + E .  Let R>O and r be the counterclockwise contour around 
rl v v r3 v r, where 

ns W(s) 1 (See Fig. 4.) Set I ($= to be the kernel of the second integral 
1 -2-s s(s+ 1) 

1 

in (14). Letting R t co we find that _I 1 I ( s )  d s  becomes the second integral 
2 1 ~  rl 

in (14), I 1 I ( s )  dsJ and 11r4 I ( s )  dsl are both O(1/R2) and 
r2 

(The constants implicit in the O( ) notation are dependent upon E.)  
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Thusf,/n eq 
rem 2 plus the 
inside r are 

uals O ( I Z - ~ + ~ )  plus the sum of the residues calculated in Theo- 
sum of the residues of I ( s )  inside r. The singularities of I(s)  

Y' (0) 1. A simple pole at s = 0 with residue - 
log2 * 

2. Simple poles at s = X k  = 2 k in/log 2, kEZ\{O) with residues b k  e2 ikn  l g n .  

Summing these residues, multiplying by n and then adding the previously calcu- 
lated contribution from the first integral yields 

(15) u (n) = n lg n + nB (lg n) + 0 (nE) . 

Note that I ( s )  does have a simple pole at s= - 1 but we do not count its 
residue because it is outside r. There are technical reasons (the behavior of 
Y(s) towards +ice when %(s)=as - 1) which stop us from setting a< -1 
and surrounding this last pole by r. It is because a= - 1 + E  that we have 
the O(nE) error term in the expression. To refine the error estimate and go 
from (15) to 

U(n)=n lg n +nB(lg n)+ 0(1), 

we must now examine U ( n )  in a slightly different way. 

recurrence (12) we find 
Consider the sequence U ( U ~ ~ )  for some fixed integer a. By unwinding the 

k - 1  i 
1 

a2j+ 1 * 
u(a2k) = ak2k + 2k U ( a )  - a2k 

j = O  

Rewriting U ( U ~ ~ )  in terms of n = ~ 2 ~ ,  yields, for these particular values of n, 

co 1 

where 

This formula generalizes the one given by Knuth [14,5.2.4 and 5.2.4-131 for 
the average case when a = 1, i.e., n = 2k. 

B is periodic with period 1 so 

B (lg n) = B (lg (a 2 k ) )  = B ( k  + lg a) = B (lg a). 
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= O(1).  Therefore, setting E < 1 in (16) and 
" 1  

~ 1 ~ 0 ,  if n = ~ 2 ~ ,  then n 

letting k go to infinity we find 
j = k  a 2 j +  1 

U ( n ) - n  lg n 
P(a) = lim = B(1g a) = B(1g n) .  

k + c o  n 

Substituting back into (16) proves the sought after 

U(n)  = n lg n + nB(1g n) + 0 (1). 
TO finish the proof of the theorem note that when %((s)=O then IY((s)l<2, so 
that bk = 0 ( l / k 2 ) ;  thus the Fourier series is uniformly convergent and the function 
~ ( u )  is continuous. Differentiability properties and numerical estimates are dis- 
cussed below. 0 

Non-dgerentiability 

There is an interesting decomposition of the periodic part of the average case 
behavior B(u) in terms of the periodic part of the worst case A(u). Define first 

A * (u) = A (u) - a,, B* (u) = B (u) - bo, 

both functions having mean value 0. We have 
" 

B*(u)-A*@)= lfbmA*(u-lgm), 
m = 2  

(19) 

where the l f b m  are the coefficients of the Dirichlet series Y (s) = - l f b m .  
ms ' m 2 2  

2 - 
' 2 m = ( m +  1 ) (m+2) -  - ( P 2 m + 1 *  

To derive (19), take the Fourier expansion of B*(u)-A*(u), expand the Fourier 
coeffcients as sums since they are special values of a Dirichlet series, and 
exchange summations : 

I , 2 ikxu  

1 e2 i kx(u - l g  m) 

" 

m = 2  

the summations on k being forjEZ\{O}. 
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Fig.6. The ~uctuation in the average case behavior of ~ e r g e s ~ r t ,  ~ a p h i n g  the coe~cient 

of the linear term -[ U(n)- n lg n] using a logarithmic scale for n = 32.. .256. From Theorem 3, 

the periodic function involved, B(u), fluctuates in [ - 1.26449, - 1.240751 with mean value 

1 
n 

bo=-1.24815 

This unusual decomposition explains the behavior of U(n)  in Fig. 6. First, 
A(u) and A*(u) have a cusp at u=O, where the derivative has a finite jump. 
The function B*(u) is A*(u) to which is added a sum of pseudo-harmonics 
A* (u - lg m) with decreasing amplitudes The harmonics corresponding to 
m=2, 4, 8 are the same as those of A*@)  up to scaling, and their presence 
explains the cusp of B*(u) at u=O which is visible on the graph of Fig. 6. We 
also have two less pronounced cusps at {lg 3) = 0.58 and at {lg 5) = 0.32 induced 
by the harmonics corresponding to m = 3 and m = 5. More generally, this decom- 
position allows us to prove the following property: The function B(u) is non- 
di~erentiubze (cusp-Eike) ut any point of the form u = lg(pf23. Stated di~erently, 
B(Eg v)  has a cusp at any dyadic rational v = p/2'.  

~ u m e r i c u ~  compu~utions * 
These have been carried out with the help of the Maple system. The computation 
of the mean vaEue bo to great accuracy can be achieved simply by appealing 
to a general purpose series acceleration method discussed by Vardi in his enter- 

taining book [17]. We have Y ( O ) =  
Q) 

O(l/m), where 
m =  1 
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The function O(y) is analytic near y = 0 with a singularity at y = - 1/2. Thus 

" 13 67 e(y) = y3 -- y4 +.- y 5  - . . . = 
4 6 C c j ~ j 7  

j= 3 

where the lcjl grow essentially like 2j. Select some small number m, (for instance 
mo = lo), and rewrite Y'(0) as 

This form is obtained by separating the first m, terms, expanding each O(l/m), 
and interchanging summations, which introduces the Riemann zeta function, 
[(s). Standard facts about the zeta function tell us that the infinite series con- 
verges like (2/mo)j. In this way, with 80 terms and m, = 10, we evaluate Y ( 0 )  
to 50 digits in a matter of one minute of computation time.' 

Regarding the computation of extreme values of B(u) accurately, the 
approach via the Fourier sereis does not seem to be practicable, since the Fourier 
coefficients only decrease as O(k-2 ) .  

Recall instead, from (18) in the proof of the theorem, that if n = ~ 2 ~  then 

B(1g n) = B(1g a) = p(a) 
where 

The computation of P(a) for all values a in an integer interval like [215 ... 216] 
(again in a matter of minutes) then furnishes the values of B with the required 
accuracy. 

One final note. From these estimates, Mergesort has been found to have 
an average case complexity about 

~1 lg n-(1.25 _+ 0.01) n+ O(1). 

This appear to be not far from the information theoretic lower bound which is 

lg n ! = n lg n - n lg e + o(n) = n lg n - 1.4411 + o(n). 

5 Variance and distribution of mergesort 

In this section we derive the asymptotic behavior of the variance of top-down 
mergesort, prove a central limit theoremand discuss the distribution of the 
cost. 

Recall the equation for variance, derived in Sect. 1, 



P. Flajolet and M. Golin 692 

where 
2m(m + 

(m + 2)2 (m + 3)  ' 8 2 m + 1 = 8 2 m + 2 =  

The anaylsis unwinds exactly as in that of the average case. Applying Lemma 2 
we find 

Theorem 5 The variance of the Mergesort algorithm applied to data of size n 
satisfies 

V (  n) = n - C (lg n) + o (n)  , 

where C(u)  is a continuous periodic function with period 1 and mean value 

1 a 2m(5m2+10m+1) 2m+ 1 
log 2m log2 m = l  (m+l)(m+2)2(m+3)2 

co=- c 
which evaluates to ~ ~ ~ 0 . 3 4 5 4 9  95688. C(u)= ck eZiknu, where for kEZ\{O}, 

kEZ * 

and 
a 2m(5m2+10m+1) 

'(')= (m+ 1 ) ( ~ ~ + 2 ) ~ ( m + 3 ) ~  
m = l  

Like the function B(u) that describes the fluctuation of the average cost the 
function C(u)  is continuous but non-differentiable with cusps at the logarithms 
of dyadic rationals, a dense set of points:Numerically, its range of fluctuation 
is found to lie in the interval [0.30,0.36]. 

The distribution of the cost of mergesort is computable exactly, as well 
as numerically, using the resources of computer algebra systems. The probability 
generating function which describes the distribution of the number of compari- 
sons performed by the single (topmost) merge of n elements is found from (1 )  
to be t n ( z ) =  

depending on whether n= 2 m  (the merge is of type (m,  m))  or n= 2m+ 1 (the 
merge is of type (m,  m+ 1)) .  The probability generating function of the cost 
of merge sort then satisfies the divide-and-conquer product recurrence, 
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Fig. 7. The histogram of the exact probability distribution of the comparison cost of mergesort 
for n = 100 

Unwinding the recurrence yields 

m 5 m  

the summation being taken oxer the multiset of all m that appear as subfile 
sizes in mergesorting n elements. For instance: 

For n = 100, the mergesort comparison costs lie in the interval [316.. .573] with 
mean value 541.84. The standard deviation is 5.78, and Fig. 7. shows the histo- 
gram of the distribution computed from these formulae. The numerical data 
strongly suggest convergence to a Gaussian law with matching mean and vari- 
ance that is also plotted on the same diagram. 

Actually, using standard extensions of the central limit theorem to sums 
of independent - but not necessarily identically distributed - random variables, 
we find: 

Theorem 6 The cost X n  of mergesort applied to random data of size n converges 
in distribution to a normal variable, 
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I, 

19 18.6 18.8 18.2 

Fig. 8. Display of the limit periodic curve B(u) for ue[18,19]. Each cross represents one simula- 
tion of the cost X ,  for n ~ [ 2 ’ ~ ,  219], with a logarithmic scale for n and the usual normalization 
( X ,  - n lg n)/n; X ,  was simulated by running top-down mergesort on one random file of n- 
elements and counting the comparisons performed 

Proof. (Sketch) Recall that, in Sect. 1, we showed that the cost of mergesort 
is the sum of independent random variables where each random variable is 
the cost of a particular merge; from (l), the variable part of each individual 
merge cost is found to have a third moment bounded by an absolute constant 
and a variance of 0 (1). The proof then directly follows from Lyapounov’s gener- 
alization of the central limit theorem [5, p. 3711. 

In particular the cost is very close to its average estimate with high probabili- 
ty. For n = 100, the probability generating function is of the form 

[51 

6.17683 10-141-x316+ ...+ 3.84796 10-14-x573. 

This shows numerically that both of the extreme cases (the best cost of 316 
and the worst cost of 573) are highly unlikely. Without getting into further 
details we mention that the distribution of X ,  also admits superexponential 
tails. That is, the probability that IX, - U(n)l is large falls off as the- distribution 
of a Gaussian random variable. 

The concentration property for the distribution is further illustrated by the 
simulation data of Fig. 8. Notice that, thanks to a “self averaging” property 
of Mergesort, we can even verify our theorems by using samples of size l! The 
(fractal) periodic functions are thus far from being an artifact of our analysis 
but closely mirror the reality of the algorithm’s behavior. 
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6 Conclusion 

Divide-and-conquer recurrences are naturally associated with Dirichlet series 
that satisfy various sorts of functional relations [l, 21 and that can be proven 
to have meromorphic continuations in the whole of the complex plane. As 
Ne have seen here and as in fll], the Mellin-Perron formula then normally 
allows us to recover asymptotic properties of the original sequence. Several 

may however occur, and we offer a brief comment. 
First, the intervening Dirichlet series are often not explicit, and one has 

to operate with infinite functional relations. One such example is the Thue-Morse 
sequence that appears in E123 in connection with a probabilistic estimation 
algorithm. The Thue-Morse sequence is defined as E, = (- 1)"("), where v(n) desig- 
nates the sum of digits of the binary represe~tation of n. Sequences such as 
these lead to infinite functional equations and integral representations and are 
typical of the forms which have to be dealt with in more general cases [2]. 

Another problem is that each sequence has a certain degree of "smoothness" 
that dictates a certain level of summations. For mergesort, we were able to 
operate with the Mellin-Perron formula relative to double sums and the integrals 
we had to evaluate were nicely convergent. In general, this need not be the 
case. Take for example the cost of Karatsuba multiplication, 

From the defining equation, the Dirichlet series offirst differences has an explicit 
form, 

a3 dKn - C(s) C 7 - 1 - 3 . 2 - S *  
n = l  

In this case the suitable form of the  elli in-Perron formula involves a different 
kernel with a denominator of the form l/s instead of the l/(s(s+ 1)) that we 
have encountered so far (and was discussed in Lemma I), i.e. 

This poses specific convergence problems, Accordingly, the sequence exhibits 
a discontinuous behavior, for instance K(2" + l)/K(2") -+ 5/2. In that case, it 

is the sum K(n)  that appears to be amenable to our treatment: see the 

closely related example of triadic binary numbers" in [ll]. 

N 

n = l  
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