AR e P

==
+¥d

Vi vare

91 5

e dbo zpv sfbe uijt j xpoefs jg zpv eje
dpohmbuvmbujpot
—j—=2a,i

e Can you read this, | wonder? If you did,
congratulations!

LT ER—WEERINETENENRY . BEmE, BE5LRN (BT LiradS):
dbo zpv sfbe uijt j xpoefs jg zpv g2 dpehmbuvmbujpot
LI ERR I A5 HEREH AR R E -

52
o WS NIk, AT DUR ATEE 2K (k-1)
AR TR, AT DR ESE BT 1712
5 Wﬁﬁ&%ﬁ%h%@%&ﬁ;ﬁ%%ﬁ
LAl A A2 Ak, AN T A
ﬁw:ﬁ‘Aﬁﬂﬁ%%7

— R EOAB, ELLE Tl Ak
B%+2 f2+3 B?%+..+(k-1) B?

@ﬁ‘ﬁ&%ﬁ%&L BLIIR A log, k] + k —
pllog; k I, SRR

0 ((Ung k| + k — 2 llog; kJ),BZ)

WH— B 2 /1 LR PlLRREE n XFERTTE, MR ER EEFERATE
WHARTSE NIRRT - R 3000 i Ea A8 i, TERTEREE
RFATATTRRY

53

o Wit —PEIETTHENAEZH A
(a+bi)(c+di), H FH3k e,
— Z R
o B
— A=(a+b)(c+d)
— B=ac
— C=hbd
— (a+bi)(c+di)=ac-bd+(ad+bc)i=B-C+(A-B-C)i

T EETERA T BRI (abdlcrdd. BR 3R

Vi vare

A

o O ADENERTE, AR EORILAS . WA RIS R Ou T
24— B e RIULHAC .

o (R DPR . AR TR
Flillo] =) (max(FIj[0], FI/I[L]})

‘UjER(i)

Fli][1] = Haag,
J

FIjjO1+) (max(Flk][0], FIKI[L]}){ + 1

KER(DNKk#]

o XFFHHBIART Ko, WEIECKULAC Amax{F [r][0], F[r][1]}.

b — e EE T HREEA I - HERRERRA T A—E 2R A LE -

m A FEE—EALEFER . B T BF - ATIBEER FER-FERR —ETEE—RE
Fl- SPEEASN a(=12 m): BRETFEILE & (FL2 . A Ao B —1R%
SRR RN TR A R EE O

el RS —ER A TR ISR IR ERSHET TR Y

/TA

W60

OO0
DOOADOOO

+60/F ek : 6 bR T LAl —FE, &G 3Mbr TR a AT

+ 120/ ek : 23 bR T A —AF, WA 2R bR S AL i fe 2 Jg AR
1805 ik : 32 fiIbR 5 LAl—HE, NS 3B3Mr 5 E i 2 Jg A
OF el : L3 hn 5L ieks < Jg s

XTHLERTHR: 2202 s AR 5 b2 —AHF, T &A 38R bR 5 2E X R J5 AN AR

A TR 3ZH2 M bR T A FE, W& 33 bR 5 EXT R 5 A AR

FRNAAERD 5 B 6T mERES LA EREREER— 121 nERF -
F— 7Sy Mkl A ABCDEF- B L 2.3 = 1#15Fnals 61T
S (—RITSHEEARIN AT, SHE - e LR FRPFEaEERET &

NMAFIFITEE: Polyall HUEH azsiwrenstusre.
PSRBT TSI BT LWL TR

7

1. Arrange the vertices arbitrarily into a cwvcle, ignoring adjacencies in the graph.

2. While the cycle contains two consecutiwve wertices vy and v, + | that are not adjacent in
the graph, perform the following two stepz:

Search for an index ;7 such that the four wertices v, v+ 1, Vi and Vy+ | are all
digtinect and such that the graph contains edges from vy to rﬁ-and from ver L to vt

Reverse the part of the cycle between vy 4 1 and vy (inclusiwve).

Each ztep increases the number of consecutiwve pairs in the owcle that are adjacent in the
graph, by one or two pairs (depending on whether r&-and Ty4 | are already adjacent), =zo the
outer loop can only happen at most i times before the algorithm terminates, where i1z the
rmamber of wertices in the given graph. By an argument similar to the one in the proof of the
theorem, the desired index 7 must exist, or else the nonadjacent wertices v,y and vy 4 1 would
hawe too small a total degree. Finding f and 7, and reversing part of the cycle, can all be

accomplished in time O{m. Therefore, the total time for the algorithm is O{rF), matching the
rmber of edgez in the input graph.

HANHE: FE—1ELD 34 TiorE 8, FIERA T MBS IoR ES 0513
T S » Ml R R SRR - (RAES n it — - EEu T mEE — R HRESE—
MEE YRR ?

« AMTTiE

— JHEE2E 3

» — vy

)il FHRER. 6. 1IBE

alphabet. symbol. word. language
— EATR AT AL e Y ?
— PREEZS Y — LS bR AR v A B 45 1 2

PRAEBC T —FE 5 kg iS4 B 27) SR A HR 2% s 2
— R T EER . EANE S A

PREE VLT —Fh i SOk S B Aoy 2

— R EER . EANE S A

I WAL AT 2

— R T EER . AANE S A

7

7

concatenation of word/language. subword/prefix/suffix
— PRE CRe L e TIE A E X ?
- (REHEESH WA AARD

\ —- ‘ o
——h
—

n) i1, FRER. E. 1B E @y

Definition 2.3.1.10. Let ¥ = {s,52,...,8nf, m = 1, be an alphabet, and
let 5y < 59 < -+ < 5, be a linear ordering on X', We define the canonical
ordering on £* as follows. For all u,ve X*,

uw<v if |ul < |vl
or |u| = |v|,u = xs;u’, and v = zs5;0

for some z,u', v € X', and i < j.

o BATNAT A B —Pial U HE P R 2

o PRBEMAREX S5 HE R AL e 2

o PREEMI XM, 25— 7 a HR e SR ?
— fFAEAR, XK 17 LR ?

)2 A E AR AL) et

Definition 2.3.2.1. A decision problem is a triple (L,U, X) where X is
an alphabet and L CU C X*. An algorithm A solves (decides) the decision
problem (L, U, X) if, for every xz € U,

(i) A(z)=1ifz € L, and
(1) Alz) =0 ifzeU~L (z ¢ L)

 decision problem) = N5 0 Al Roan At 4 =2 82
— XHEMwordeftAa?

S5 BV T2 B RE R 46 50

An equivalent form of a description of a decision problem is the following
form that specifies the input-output behavior.

Problem (L,U, X')

Input: Anx el
Output: “yes" if x € L,
no" otherwise.

For many decision problems (L, U, X') we assume U = L*. In that case we
shall use the short notation (L, X'} instead of (L, X*, X).

o IRERIXBOEE 7Y

a) @H2. F e AA]l (e

o XL EI AR AT BRI Al R A IREEEE
a4y I I e X ?
— Primality testing {w € {0,1}" | Number(w) is a prime}
— Equivalence problem for polynomials
— Satisfiability problem {we Tt . |wis a code of a satisfiable formula in CNF}
— Cligue problem {r#w € {0,1,#}" | z € {0,1}* and w represents a graph

that contains a clique of size Number{x)}

— Vertex cover problem {u#tw € {0,1,#}" | ue {0,1}" and w represents a graph that

contains a vertex cover of size Number(u)}

— Hamiltonian Cycle problem {we {0,1,#}" | w represents a graph that

contains a Hamiltonian cycle}

— Existence of a solution of linear integer programming
{{4,b) € {0,1,#}" | Solz(A,b) # 0}

R E2: AEAIPLAL IR] e

Definition 2.3.2.2. An optimization problem is a 7T-tuple U = (X}, Yo, L,
Ly, M, cost, goal), where

(i) X, is an alphabet, called the input alphabet of U,
(i) Xo is an alphabet, called the output alphabet of U,
(#i) L © X7 is the language of feasible problem instances,
(iv) Ly C L is the language of the (actual) problem instances of U,
(v) M is a function from L to Pot(E}),* and, for every ¢ € L, M(z) is
called the set of feasible solutions for x,
(vi) cost is the cost function that, for every pair (u,z), where u € M(zx) for
some ¢ € L, assigns a positive real number cost(u,x),
(vit) goal € {mintmum, mazimum}.

= 9

. opt|m|zat|onproblemtljﬁ/]’b/l\ﬁ? B TN =V

An algorithm A is consistent for U if, for every x € L, the output
A{I:) £ Mi(z). We say that an algorithm B solves the optimization problem

v if

(i) B is consistent for U, and
(i) for every x € Ly, B(x) is an optimal solution for x and U.

AL SFIR N Z 25 BRI 45 R ?

m) @2 F e A A] @l e

o {RFEfFEtraveling salesperson problem J 15 ?

Input: A weighted complete graph (G,c), where G = (V,E}and c: E —
IN. Let V = {v,...,0,} for some n € IN — {0}.

Constraints: For every input instance (G,¢), M(G,c) = {vy,, iy, i,
vy, | (i1,%2,...,1n) is a permutation of (1,2,...,n)}, i.e, the set of
all Hamiltonian cycles of (.

Costs: For every Hamiltonian cycle H = v, vy, ... v, v, € M(G,¢),
cost((vi,, Vis, . .- Vi, Uiy)5 (Gre)) = Z?:l c{{vig Vi mod n)+1 b
i.e., the cost of every Hamiltonian cycle H is the sum of the weights
of all edges of H.

Goal; TRATIETTALTL.

m) @2 F e A A] @l e

o {RFEfFEmakespan scheduling problem J g ?

Input: Positive integers py,p2.-..,Pn and an integer m > 2 for some n €
N — {0}.

{pi is the processing time of the ith job on any of the m available
machines}.

Constraints: For every input instance (pj,....pn,m) of MS,
Mipr,. ooy pnam) = {51,5,...,5, |5 € {1,2,...,n} fori =
L...,m Uj, S ={1.2,...,n}, and §; N S; =0 fori # j}.
{Mip1,...,pn.m) contains all partitions of {1,2,...,n} into m

subsets. The meaning of (S1,52,...,5m) is that, fori = 1,...,m,
the jobs with indices from 5; have to be processed on the ith
machine}.

Costs: For each (S, Sa2,...,8m) € M{m,...,pa, m),
cost((Sy, ..., Sm)s (P1y .. Pnym)) =max {3, e pili=1,...,m}.

Coal: TRERETIVILTTL.

m) @2 F e A A] @l e

o YRFEfEminimum vertex cover problem | & ?

Input: A graph G = (V, E).

Constraints: M{G) = {S C V |every edge of E is incident to at least one
vertex of S}.

Cost: For every 5 € M(G), cost(S, G) = |S|.

Goal: minimum.

m) @2 F e A A] @l e

o {RFEfiFEset cover problem | N5 ?

Input: (X, F), where X is a finite set and F C Pot(X) such that X =
UsexS-

Constraints: For every input (X, F),
MXF)={CCF|X= USE{.:"S‘}'

Costs: For every O' &€ M(X, F), cost{C, (X, F)) = |C|.

Goal: Trindmum

m) @2 F e A A] @l e

o YRFEfFEmaximum clique problem 1 15 ?

Input: A graph &G = (V| E)

Constraints: M(G)={S C V |{{w,v}|u,ve S,u# v} C E}.
{M(G) contains all complete subgraphs (cliques) of G'}

Costs: For every § € M((), cost(S,G) = |S|.

Goal: FRLTITRALITL,

m) @2 F e A A] @l e

o YRFEfEmaximum cut problem J g ?

Input: A graph G = (V, E).
Constraints:

M(G) = {(Vi,Va) | Vs UVa = V, Vi # 0 # Va,andV} N V; = 0},
Costs: For every cut (V1,15) € M(G),

cost((Vi,V2),G) = |[ENn{{u, v} |ue Vi,ve Va}.

Goal: TG

m) @2 F e A A] @l e

o fR¥fEknapsack problem | 15 ?

Input: A positive integer b, and 2n positive integers wy, wa,...,Wn, €1,
2, ...,0n for some n € IN — {0}.

Constraints:
Mibwi,..wn,ens.) = {TCS{L ... o0} Ycpwi < b}
Costs: Foreach T ¢ M(b,wy,...,wn,€1,...,Cn),
cost(T,b,wy,. .., Wn,C1,...,Cn) = Z},ET c;.

Goal: TRATiTnLm.

m) @2 F e A A] @l e

o {R¥EfFbin-packing problem | 15 ?

Input: n rational numbers wy, we,. .., Wy £ [[L 1| for some positive integer

.

Constraints: M(wy,wz,...,uy,) = {§ € {0,1}"| for every s € 8§,
8T (wy,wa, ..., we) <l and X cgs=(1,1,...,1)}.
S = {s1,52....,8m}, then s; = (50,8i2,...,8in) determines

the set of objects packed in the ith bin. The jth object is packed into
the ith bin if and only if s;; = 1. The constraint

s (wyy ..y wy) < 1

assures that the ith bin is not overfilled. The constraint

S s=(1,1,...,1)

sEs

assures that every object is packed in exactly one bin.}
Cost: For every S € M(wy,wa, ..., wn),

cost(S, (wy, ..., wn)) = |S].

CGoal: MINIMUM.

A g2, 3

4| 58 AL AL A @l ()

o PRI fFEmaximum satisfiability problem J 1 ?

Input: A formula @ = Fy A Fo A+ A Fy over X = {x1,T9,...} in CNF
(an equivalent description of this instance of MAX-SAT is to consider

the set of clauses Fy, Fy, ..., F).

Constraints: For every formula @ over theset {xy,...,2,} € X, n € IN={0},
M(2) = {0,1}™.
{Every assignment of values to {r),...,zn} is a feasible solution,

i.e., M(®) can also be written as {a|a : X — {0,1}}.
Costs: For every @ in CNF, and every o € M(®),

cost(a, ?) is the number of clauses satisfied by a.
Goal: mazrimum.

m) @2 F e A A] @l e

o YRIfAinteger linear programming J 15 ?

Input: An m = n matrix A = lai;]i=1, . m,j=1,..n and two vectors b =
(biy- . bm)T, e = (e1,. .., ¢,) " forsome n,m € IN—{0}, as;, bs, ¢
are integers fori = 1,..., m,i=1,..., 1.

Constraints: M(A,b,¢) = {X = (z1,...,3) € Z"|AX = band z; = 0
fori=1,...,n}.

Costs: Forevery X = (zy,...,1,) € M(A,b,¢),
cost(X, (A, b,c)) = 30, cii.

Goal: minimum.

m) @2 F e A A] @l e

o YRFEfFEmaximum linear equation problem mod k | "5 ?

Input: A set 5§ of m linear equations over i unknowns, n,m IN — {D}
with coefficients from Z£;..
(An alternative description of an input is an m x n matrix over 22
and a vector b € Z).
Constraints: M(S) = Z"
{a feasible solution is any assignment of values from {0,1,..., k—1}
to the i unknowns (variables)}.
Costs: For every X € M(S),
cost{ X, 5) is the number of linear equations of S satisfied by X
Goal: mazimum.

A 553, PAINP

o RIEXFfEupper boundflllower bound?

A 3. PHINP ()

o VRREMFRER IR M & L Z IR RS 7
— P |

— NP NP-Hard ‘ NP-Hard
— NP-hard \ /|
— NP-complete |

P=NP=
NP-Complete

-Complexity

P # NP

« EE, BFEWAMPI— 2, Mgk U
— P. NP. NP-complete#[2 i 31 5 v /5 i)
— NP-hard "] DAAFIR H) 5) il . A a8 55 252 a) 7t

0] /3. PAINP (4

/_' ﬁﬁ A) }-L A)

o PREAFMEXEL?
The complerity of deterministic computations is the complezity of
proving the correctness of the produced output, while the complexity

of nondeterministic computation is equivalent to the complezity of de-
terministic verification of a given proof (certificate) of the fact z € L.

o PREES B XA TORAREEL ?

x2=1

Coon | Comt | Coro [Con | Croo | Chot | Crio | Cin

accept

ry=1

0] /3. PAINP (4

DAL A B ER “NP” FT “P” , IRBEFEMND ?

Definition 2.3.3.21. NPO is the class of optimization problems, where U
(X1, Xo, L, L, M, cost, goal) € NPO if the following conditions hold:

(i) L; € P,
(it) there exists a polynomial pyy such that
a) for every x € Ly, and every y € M(x), |y| < pu(|x]), and
b} there exists a polynomial-time algorithm that, for every y € L% and
every r € Ly such that |y| < py(|z|), decides whether y € M(x), and
(itt) the function cost is computable in polynomial time.

Informally, we see that an optimization problem U7 is in NPO if

(i} one can efficiently verify whether a string is an instance of U,

(i1) the size of the solutions is polynomial in the size of the problem instances
and one can verify in polynomial time whether a string ¥ is a solution to
any given input instance r, and

(iii) the cost of any solution can be efficiently determined.

Definition 2.3.3.23. PO is the class of optimization problems U = (X, Yo,
L, Ly, M, cost, goal) such that

(i} U € NPO, and
(i) there is a polynomial-time algorithm that, for every x € Ly, computes an
optimal solution for x.

