4-11 P and NP

Hengfeng Wei

hfwei@nju.edu.cn

May 20, 2019

＂对于数学问题，自己想出解答，和判断别人说的解答是否正确，何者比较简单＂

decide.

Always terminate.

Definition (Halting Problem)

Input: An arbitrary program and input
Output: Will the program eventually halt?

Alan designed the perfect computer

Undecidable
 But Acceptable (Semi-decidable)

$$
\mathrm{P}=\{L: L \text { is decided by a poly. time algorithm }\}
$$

Theorem (Theorem 34.2)

$$
P=\{L: L \text { is accepted by a poly. time algorithm }\}
$$

You can safely forget "semi-decidable" in computational complexity theory.

Definition (NP)

$L \in \mathrm{NP}$

\exists poly. time verifier $V(x, c)$ such that
$\forall x \in\{0,1\}^{*}: x \in L \Longleftrightarrow \exists c$ with $|c|=O\left(|x|^{k}\right), V(x, c)=1$.

NP-problems has short certificates that are easy to verify.

$\exists L: L \notin \mathrm{NP} ?$

$\exists L: L \notin \mathrm{NP} \wedge L$ is decidable?

Theorem (Deterministic Time Hierarchy Theorem (1965))

$$
f(n) \log f(n)=o(g(n)) \Longrightarrow D T I M E(f(n)) \varsubsetneqq D \operatorname{TIME}(g(n))
$$

$$
\mathrm{P} \varsubsetneqq \mathrm{EXP}
$$

Theorem (Non-deterministic Time Hierarchy Theorem (Cook, 1972))

$$
f(n+1)=o(g(n)) \Longrightarrow \operatorname{NTIME}(f(n)) \varsubsetneqq \operatorname{NTIME}(g(n))
$$

NP \varsubsetneqq NEXP

$\exists L: L \notin \mathrm{NP} \wedge L$ is decidable?

"Equivalence of Regular Expressions with Squaring" is NEXP-complete:

$$
e_{1} \cup e_{2}, \quad e_{1} \cdot e_{2}, \quad e^{2}
$$

Closure of NP (CLRS 34.2-4)
NP is closed under \cup, \cap, \cdot, \star.

$$
L_{1} \in \mathrm{NP}, L_{2} \in \mathrm{NP} \Longrightarrow L=L_{1} \circ L_{2} \in \mathrm{NP}
$$

$$
L_{1} \in \mathrm{NP}, L_{2} \in \mathrm{NP} \Longrightarrow L=L_{1} \cup L_{2} \in \mathrm{NP}
$$

$$
\begin{array}{lc}
\hline \text { 1: } & \text { procedure } \mathrm{V}(x, c) \\
2: & \text { if } c \neq c_{1} \# c_{2} \text { then } \\
3: & \text { return } 0 \\
\text { 4: } & \text { return } V\left(x, c_{1}\right) \vee V\left(x, c_{2}\right)
\end{array}
$$

$$
x \in L_{1} \cup L_{2} \Longleftrightarrow \exists c, V(x, c)=1
$$

$$
L_{1} \in \mathrm{NP}, L_{2} \in \mathrm{NP} \Longrightarrow L=L_{1} \cap L_{2} \in \mathrm{NP}
$$

1:	procedure $\mathrm{V}(x, c)$
2:	if $c \neq c_{1} \# c_{2}$ then
3:	return 0
4:	return $V\left(x, c_{1}\right) \wedge V\left(x, c_{2}\right)$

$$
x \in L_{1} \cap L_{2} \Longleftrightarrow \exists c, V(x, c)=1
$$

$$
L_{1} \in \mathrm{NP}, L_{2} \in \mathrm{NP} \Longrightarrow L=L_{1} \cdot L_{2} \in \mathrm{NP}
$$

1: procedure $\mathrm{V}(x, c)$
2: if $c \neq c_{1} \# c_{2} \& m$ then
3: return 0

4: \quad return $V\left(x_{1 \ldots m}, c_{1}\right) \wedge V\left(x_{m+1 \ldots|x|}, c_{2}\right)$

$$
x \in L_{1} \cdot L_{2} \Longleftrightarrow \exists c, V(x, c)=1
$$

$L \in \mathrm{NP} \Longrightarrow L^{\star} \in \mathrm{NP}$

$$
\begin{array}{ll}
\text { 1: } & \text { procedure } \mathrm{V}(x, c) \\
\text { 2: } & \text { for } k \leftarrow 1 \text { to }|x| \text { do } \\
3: & m_{0} \leftarrow 0, m_{k} \leftarrow|x| \\
\text { 4: } & \text { if } c=c_{1} \# c_{2} \# \cdots \# c_{k} \& m_{1} \& m_{2} \& \cdots \& m_{k-1} \text { then } \\
\text { 5: } & \text { return } \bigwedge_{i=k}^{i=k} V\left(x_{m_{i-1}+1 \ldots m_{i}}, c_{i}\right)
\end{array}
$$

$$
x \in L^{\star} \Longleftrightarrow \exists c, A(x, c)=1
$$

Definition (Polynomial-time Reduction)

$$
L_{1} \leq_{p} L_{2} \text { if } \exists \text { poly. time function } f \text { such that }
$$

$$
\forall x: x \in L_{1} \Longleftrightarrow f(x) \in L_{2}
$$

$$
\forall L \in \mathrm{NP}, L \leq_{p} L^{\prime} \Longrightarrow L^{\prime} \text { is NP-hard }
$$

NP-complete $=$ NP \cap NP-hard

CLRS 34.5-6

HAM-PATH is NP-complete

HAM-CYCLE \leq_{p} HAM-PATH

$G \in \mathrm{HAM}-\mathrm{CYCLE} \Longleftrightarrow G^{\prime} \in \mathrm{HAM}-\mathrm{PATH}$

$\forall u \in V(G): \operatorname{deg}(u) \geq 2$

HAM-CYCLE \leq_{p} HAM-PATH

$\forall e \in G$: Construct G_{e}

Definition (Polynomial-time Reduction)

$$
\begin{aligned}
& L_{1} \leq_{p} L_{2} \text { if } \exists \text { poly. time function } f \text { such that } \\
& \qquad \forall x: x \in L_{1} \Longleftrightarrow f(x) \in L_{2} .
\end{aligned}
$$

x for $L_{1} \mapsto x^{\prime}=f(x)$ for L 2

Call the oracle O_{2} for L_{2} once

Answer whatever O_{2} returns

KEEP
CALM
THAT
IS
ALL

Definition (Polynomial-time Reduction)

$L_{1} \leq_{p} L_{2}$ if \exists poly. time function f such that

$$
\forall x: x \in L_{1} \Longleftrightarrow f(x) \in L_{2}
$$

Karp Reduction

reducibility among combinatorial problems'

Richard M. Karp
University of California at Berkeley
(1972)

Richard M. Karp (1935 ~)

Cook Reduction

The Complexity of Theorem-Proving Procedures Stephen A. Cook

University of Toronto
(1971)

Stephen Cook (1939~)

$$
\mathrm{UNSAT}=\{\varphi: \varphi \text { is unsatisfiable. }\}
$$

Q : Is UNSAT NP-hard?

Proof.

$\mathrm{SAT} \leq_{p} \mathrm{UNSAT}$

$$
x \in \mathrm{SAT} \Longleftrightarrow x \notin \text { UNSAT }
$$

$$
\forall x: x \in L_{1} \Longleftrightarrow f(x) \in L_{2}
$$

Office 302
Mailbox: H016
hfwei@nju.edu.cn

