CS
_ CS§E4
_ CSEEA o
_ CSiEA 27
Csigz; 37y
%4:22

]
]
Pl Pl Pl]

=it
]

O]

)\
n}\8 \11 1;
,—\[)\9\ 13 16
L

)\1\ 4 \(5
}L.

)\8\ |

N 9\
N 10

CSEH4.17 0] /816

e ... This version does not specify that the ears are nonadjacent.
What happens if we try proving this by induction, using the
same decomposition that we used in proving the Ear Lemma?

ZaND

CSZR4.177 0| fi17

e ...relationship between the number of vertices in a polygon
and the number of triangles in any triangulation of that

polygon ...

— FEHCEF AT, ff Htop-down i dEbottom-up R IA 772, B M
FUE 5 H 6

— Blin: BAEEnLIESR s, A RMEEn- 1AL

CSEHA.27 |n) /i g

e T(n)=2T(n-1)+2000 (n>1)
 T(1)=2000

CSZH4.277 [n] i 11

« EHA45

CSEHA.27 [n) /817

CSZ24.37 |n) il

¢« (c)F o(nlogz 3)¢Q(nlg3)

CSZ74.377 |0 16

e O(a™)#0O(c")
e O(a™)#0((ac)™)

CSEH4.47Y [n) i

e TEH411 (EEHPIP REEAD

CSEE4.571 |0 g

EiR1

— BKIET(n)<cn3

— B T(n/2)<c(n/2)3

— 1H5T(n)<cn3+nlgn=0(n3)+0(n2)=0(n3), 15
B2

— ARAET(n)<cn3-dnlgn

— A AET(n/2)<c(n/2)3-d(n/2)Ig(n/2)

— FET(n)<...<cn3, 1HiIF

£ 13

— #KIUET(n)<c,n3

— AP T(n/2)scy(n/2)?

— TFHET(n)<c n3+nlgn<c,n3+c,n3=c;n3, FHIE
Hizd

— BKUET(n)<cn3-d

— AR KT(n/2)sc(n/2)*-d

— FHET(n)<cn3-d-7d+nlgn, A FHld>nlgn/7, 13ilE

\)

CSZ4.577 [n] @8 (1)

o —PhETA

— BKUET(n)<c(n3-n2)+d

— AP KT(n/2)<c((n/2)3-(n/2)?)+d

— 1FHET(n)<cn3-2cn2+8d+nlgn=[c(n3-n2)+d]+(nlgn+7d-cn?)
<[c(n3-n?)+d]+(n?+7d-cn?)

— H3Fc>7d+1, T(n)<[c(n3-n2)+d]+(n2+7d-(7d+1)n?)

=[c(n3-n?)+d]+7d(1-n?)<c(n3-n?)+d
— JFH, T(1)=d<dtdjfiar

o AMVIe
— TCH 53
— CSERE5E 6. 719

7] #1: randomized algorithm

o M aFERIFE A LLFRErandomized algorithm?

o H2Mffirandomized algorithm[Jexpected running time ?
« ¥ Flaverage-case running timef {14 7 [q) ?

7] #1: randomized algorithm

o M AaRERIE R PLFRErandomized algorithm ?

— Its behavior is determined not only by its input but also by something
chosen randomly (e.g. values produced by a random-number
generator).

o H2Mffirandomized algorithm[Jexpected running time ?
« ¥ Flaverage-case running timef {14 7 [q) ?

7] #1: randomized algorithm

o M AaRERIE R PLFRErandomized algorithm ?

— Its behavior is determined not only by its input but also by something
chosen randomly (e.g. values produced by a random-number
generator).

o H2Mffirandomized algorithm[Jexpected running time ?
« ¥ Flaverage-case running timef {14 7 [q) ?

— 5: We discuss the average-case running time when the probability
distribution is over the inputs to the algorithm, and we discuss the
expected running time when the algorithm itself makes random
choices.

7] @1: randomized algorithm (4

o PREEAEBIMRLLTVRA R —>32-bitl] (P5) FEALEL?

\)

ma]@&l1: randomized algorithm ()

o VREEAEFHRLL 7y pl— 1 32-bit) (4h) BENLZEL?

— Computational methods (pseudo random number generators)

m_w = <choose-initializer>
m_z = <choose-initializer>

N

i cF

uint get_random()
I
m_z = 36969 % (m_z & 65535) + (m_z >> 16);

m_w = 18000 # (m_w & 65535) + (m_w >> 16);
I::m_z 16 + m_w, Ju J2-bit result »

— Physical methods
Coin flipping
* Dice
e Variations in the amplitude of atmospheric noise recorded with a normal radio

7] @1: randomized algorithm (4

o PREEAEBIIREL T VAR — A B R B LA ?
PRUNAT PR A — T IR 2R 7

7] @i1: randomized algorithm ()

o PREEAE BUMPLL 7250 — A EEAL P R o R BE AL R ?
PRUNAT PR A — T IR 2R 7

— PERMUTE-BY-SORTING(A)

1

N Lo

n = A.length
let P[1..n]be anew array
fori = lton

P[i] = RanpoM(1,n?)
sort A, using P as sort keys

— RANDOMIZE-IN-PLACE(A)

1

N
3

n = A.length
fori = 1ton
swap A[i] with A[RANDOM(i, n)]

19

7] @i2: expected running time

o HAMIE, IR T MR R RE(X) ?

7] @i2: expected running time

o HEIDVIE, PREYR 7R T HEX)?
— E(X)=3xP(X=x) //EX
— E(X)=3E(X,) //indicator random variable
— E(aX+bY)=aE(X)+bE(Y) // linearity of expectation
— E(X)=3E(X]|F,)P(F,) //conditional expected value

0] @l2: expected running time (4

R BEAARE I B) WS A 5 R s 7

Slower Quicksort(A,n)
if (n=1)

return the one item in A

else
Repeat
p = randomElement(A)
Let H be the set of elements greater than p; Let h = |H|

Let L be the set of elements less than or equal to p; Let £ = |L|
Until (|H| = n/4) and (|L| = n/4)
Ay = QuickSort(H,h)
As = QuickSort(L,¥)
return the concatenation of A; and As

T'(n) < E(r)bn+T(a,n)+T((1 —a,)n)

22

0] @l2: expected running time (4

o PREEMEREX BT I A 7 72 2

RandomSelect(A,i,n)
(selects the ith smallest element in set A, where n = 4])
if (n=1)
return the one item in A
else
p = randomElement(A)
Let H be the set of elements greater than p
Let L be the set of elements less than or equal to p
If (H is empty)
put p in H
if (i <|L|)
Return RandomSelect(L,i,|L|)
else
Return RandomSelect(H,i — |L|,|H]).

T(3n)+iT(n)+bn ifn>1
ifn=1

1
T(n)g{ 3

23

] @l2: expected running time (4

o PREEMEREX BT I A 7 72 2

Exercise 5.6-4 Consider an algorithm that, given a list of n numbers, prints them all out.
Then it picks a random integer between 1 and 3. If the number is 1 or 2. it stops.
[f the number is 3 it starts again from the beginning. What is the expected running
time of this algorithm?

2 1, .
T(n)= §(71 + 5('('11 +T'(n))

24

0] @l2: expected running time (&

o PREAXHAindicator random variable?

2] FHindicator random variable>f faj 44, B 28 [{) 1145 2

N
7

o V1 A\

4

o TEIXUEH @, indicator random variable) Al 7] LA A4 2
— The expected number of times that we hire a new office assistant.
— The expected number of pairs of people with the same birthday.
— How many sixes do we expect to see on top if we roll 24 dice?

CERA, MR E S FAT—mMHHER? D

0] @l2: expected running time (&

4

REX T f#Eindicator random variable?
« E 2 H|Hindicator random variablef faj 4t B 28 ()14 2

N

E[X] = E[) X
im1 Given a sample space S and an event A in the sample space S, let X4 = [{A}.
n Then E [X 4] = Pr{A}.
= Y E[xi]
i=1

o TEIXUEH @, indicator random variable) Al 7] LA A4 2
— The expected number of times that we hire a new office assistant.
— The expected number of pairs of people with the same birthday.
— How many sixes do we expect to see on top if we roll 24 dice?

CERA, MR E S FAT—mMHHER? D

26

n]/&@12: expected running time (4

Suppose that you want to output 0 with probability 1/2 and 1 with probability 1/2.
At your disposal is a procedure BIASED-RANDOM, that outputs either O or 1. It
outputs 1 with some probability p and 0 with probability 1 — p, where 0 < p < 1,
but you do not know what p is. Give an algorithm that uses BIASED-RANDOM
as a subroutine, and retums an unbiased answer, returning 0 with probability 1/2

and 1 with probability 1/2. What is the expected running time of your algorithm
as a function of p?

27

n]/&@12: expected running time (4

° UNBIASED-RANDOM()

Output: 0 with probability 1/2 and 1 with probability 1/2
while true do

a + BIASED-RANDOM()

b + BIASED-RANDOM()

if a < b then return 0

if a > b then return I

L¥ 1] [l LF¥] () —

The algorithm calls BIASED-RANDOM twice to get two random numbers A and B. It repeats this until

A # B. Then, depending on whether A < B (thatis,A=0and B=1)orA > B (thatis;,A=1and B=0) it
returns O or I respectively.

In any iteration, we have Pr(A < B) = p(1 — p) = Pr(B < A), that is, the probability that the algorithm
returns O in that iteration equals to the probability that it returns | in that iteration. Since with probability 1
we return something at some point (and not repeat the loop endlessly) and the probabilities of returning 0
and | are equal in each iteration, the total probabilities of returning O and 1 must be 1 /2 and 1 /2 respectively.

o EitHexpected running time?

28

n]/&@12: expected running time (4

° UNBIASED-RANDOM()

Output: 0 with probability 1/2 and 1 with probability 1/2
while true do

a + BIASED-RANDOM()

b + BIASED-RANDOM()

if a < b then return 0

if a > b then return I

L¥ 1] [l LF¥] () —

« EAttHexpected running time?

The algorithms stops, if it either returns O or 1. In every iteration, the probability of this is Pr(A # B) =
Pr(A < B)+Pr(B <A)=2p(1— p). Thus, we have a sequence of independent Bernoulli trials, each with
probability 2p(1 — p) of success. Therefore, the number of iterations required before the algorithm stops 1s
geometrically distributed with parameter 2p(1 — p), and the expected number of iterations is 1 /(2p(1 — p)).
As each iteration takes constant time (assuming that BIASED-RANDOM takes constant time), the expected
running time of the algorithm is @(1/(p(1 —p))).

29

] @3: probability distributions and variance

o fREAHfAEdistribution functionf1'E B histogram ?

—

probability

—

- -

TR EEEEE
EREREEEERE

vvvvvvvvvvvvvvv

0 3 6 9 12 15 15 21 24
number of heads

o PREAXH A cumulative distribution function ?
‘B W)i 2
H 2450 H 848 FH cumulative distribution function ?

30

7]/ #13: probability distributions and variance

o RIRVRXFvariance B i

o Nt Avariance i 7€ X E((X-E(X))2) X P20 ?

