3-14 IEE %E’]

o iy

N

AR E R o AR R A7

AR E R o AR R A7

We start with the fundamental definition of approximation algorithms. Infor-
mally and roughly, an approximation algorithm for an optimization problem
is an algorithm that provides a feasible solution whose quality does not differ
too much from the quality of an optimal solution.

2023/12/6 3

TRBE AR IX A I

Definition 4.2.1.1. Let U = (¥1,X0,L, L;, M, cost, goal) be an optimiza-
tion problem, and let A be a consistent algovithm for U. For every x € Ly,
the relative error € 4(x) of A on x is defined as

|cost(A(z)) — Opty ()|
Opty ()

For any n € IN, we define the relative error of A as

ca(x) =

ea(n) =max{ea(z)|z e LiNn(Z)"}.

2023/12/6 4

TRBE AR IX A I

Definition 4.2.1.1. Let U = (¥1,X0,L, L;, M, cost, goal) be an optimiza-
tion problem, and let A be a consistent algovithm for U. For every x € Ly,
the relative error € 4(x) of A on x is defined as
|cost(A(z)) — Opty(=)|

Opty(z)

For any n € IN, we define the relative error of A as

ca(x) =

ea(n) =max{ea(z)|z € Lin(X)"}.

For every z € Ly, the approximation ratio R4 (x) of A on x is defined

o) = cost(A(z)) Opty(x)
Ra(z) = { Opty; (z) ’cost(A(GU))}‘

For any n € IN, we define the approximation ratio of A as

as

Ra(n) =max{Ra(z)|z € Lin(X)"}.

2023/12/6 5]

TRBE AR IX A I

Definition 4.2.1.1. Let U = (¥1,X0,L, L;, M, cost, goal) be an optimiza-
tion problem, and let A be a consistent algovithm for U. For every x € Ly,
the relative error € 4(x) of A on x is defined as
|cost(A(z)) — Opty(=)|
Opty(z)

For any n € IN, we define the relative error of A as

ca(x) =

ea(n) =max{ea(z)|z € Lin(X)"}.
For every z € L, the approximation ratio R4 (x) of A on x is defined

as cost(A(z)) Opty(x) }
Opty(z) * cost(A(z)) [

For any n € IN, we define the approximation ratio of A as

Ra(zx) =max{

Ra(n) =max{Ra(z)|z € Lin(X)"}.

For any positive real § > 1, we say that A is a §-approximation algo-
rithm for U if Ra(z) < § for every z € Ly.

For every function f : IN — IR™, we say that A is an f(n)-approximation
algorithm for U if Ra(n) S»f(n) for every n € IN.

2023/12/6 6

PRBE R R IX LA 2 Y

Definition 4.2.1.1. Let U = (¥1,X0,L, L;, M, cost, goal) be an optimiza-
tion problem, and let A be a consistent algovithm for U. For every x € Ly,
the relative error € 4(x) of A on x is defined as

EA((I}) - |COSt(A((‘;;),Z —(m(;pt[f(w)l

For any n € IN, we define the relative error of A as
ea(n) =max{ea(z)|z € Lin(X)"}.
For every z € L, the approximation ratio R4 (x) of A on x is defined

_ cost(A(z)) Opty(x)
Ra(z) = { Opty(z) cost{A(z)) }

For any n € IN, we define the approximation ratio of A as

as

Ra(n) =max{Ra(z)|z € Lin(X)"}.

For any positive real § > 1, we say that A is a §-approximation algo-
rithm for U if Ra(z) < § for every z € Ly.

For every function f : IN — IR™, we say that A is an f(n)-approximation
algorithm for U if Ra(n) S»f(n) for every n € IN.

Note that unfortunately there are many dif-
ferent terms used to refer to R4 in the literature. The most frequent ones,
besides the term approximation ratio used here, are worst case performance,
approximation factor, performance bound, performance ratio, and error ratio.

2023/12/6 7

TRIEICEIX o) R 2

Makespan Scheduling Problem (MS)

Input: Positive integers py,p2,...,Pn and an integer m > 2 for some n €
IN — {0}.
{p; is the processing time of the ith job on any of the m available
machines}.

Constraints: For every input instance (py,...,pn,m) of MS,
Mpy, ... pa,m) = {S1,8,...,5,|S: C {1,2,...,n} for i =
L...,m, Uit Sk ={1,2,...,n}, and S; N S; = 0 for ¢ # j}.
{M(p1,...,pn,m) contains all partitions of {1,2,...,n} into m
subsets. The meaning of (51,53,...,8m) is that, forz = 1,... ,m,
the jobs with indices from S; have to be processed on the ith
machine}.

Costs: For each (51, Ss,...,5,) € M(p1,...,pn,m),

cost({S1,...,Sm), (P1,- .., Pn,m)) = max {ZES‘_ pli=1,...,m}.
Goal: minimum.

2023/12/6 8

TRIEMEX N x g7

Algorithm 4.2.1.3 (GMS (GREEDY MAKESPAN SCHEDULE)).

Input: = (m,...,Pn,Mm), n, M, D1, ..., Pn Positive integers and m > 2.
Step 1: Sort p1,...,Pn.
To simplify the notation we assume p; > p; > -+ > p, in the rest
of the algorithm.
Step2: fori=1tomdo
begin T; := {i};
Time(T;) :=ps
end
{In the initialization step the m largest jobs are distributed to the
m machines. At the end, T; should contain the indices of all jobs
assigned to the ith machine for i = 1,...,m.}
Step3: fori=m-+1tondo
begin compute an [such that
Time(T;) := min{ Time(T;){1 < j <m};

T, =T U {‘5}»
Time(T;) := Time(Ty) +p:
end

Output: (T],Tg, e ,Tm).

2023/12/6 9

TRIEARIX BT UERE 7157

Optys(I) 2 pr Zp2 2+ = py. (4.1)
T"- s
Optyss(1) > L=Vt (4.2)
s
k
e < Z—E—li (4.3)

(1) Let n < m.
Since Optyys(T) = (4.1) and eost({1}, {2},..., {n}.8,...,0) = py, GMS
has found an optimal solution and so the approximation ratio is 1.

(2) Let n = m.
Let T} be such that cost(T}) = Zﬂ: 7, Pr = cost(GMS(I)), and let k be the
largest index in T}, If & < m, then T = 1 and so Optys(f) = p1 = o
and GMS([) is an optimal solution.
Now, assume m < k, Following Figure 4.2 we see that

Opt s () = cost(GMS(I)) — pe (4.4)
because of Yr) p; > m - [cost(GMS(I)) — pi] and (4.2).

cost (GME(I}

k
cost(GMS(1)) ~ Optaes(I) < pi < ():m) [k @

(4.4) [4.3) Y i=1

cost(GMS(1)) ~ Optas() _ (Z, i) ﬂc m

{1

LJF‘EME[I] ':'d_-d — T]_PI. J{T”' -

{a.2)

cost({OMSB{I))—py

2023/12/6 10

TRIEARIX BT UERE 7157

Optys(I) 2 pr Zp2a 2 = pp. (4.1)
T"- s
Optyss(1) > L=Vt (4.2)
s
k
e < Z—E—li (4.3)

(1) Let n < m.
Since Optyys(T) = (4.1) and eost({1}, {2},..., {n}.8,...,0) = py, GMS
has found an optimal solution and so the approximation ratio is 1.

(2) Let n = m.
Let T} be such that cost(T}) = Zﬂ: 7, Pr = cost(GMS(I)), and let k be the
largest index in T}, If & < m, then T = 1 and so Optys(f) = p1 = o
and GMS([) is an optimal solution.
Now, assume m < k, Following Figure 4.2 we see that

Opt s () = cost(GMS(I)) — pe (4.4)
because of Yr) p; > m - [cost(GMS(I)) — pi] and (4.2).

cost (GME(I}

k
cost(GMS(1)) ~ Optaes(I) < pi < ():m) [k @

(4.4) [4.3) Y i=1

cost(GMS(1)) ~ Optas() _ (Z, i) ﬂc m

{1

LJF‘EME[I] ':'d_-d — T]_PI. J{T”' -

{a.2)

cost({OMSB{I))—py

2023/12/6 11

TRIEARIX BT UERE 7157

Optys(I) 2 pr Zp2a 2 = pp. (4.1)
T"- s
Optyss(1) > L=Vt (4.2)
s
k
e < Z—E—li (4.3)

(1) Let n < m.
Since Optyys(T) = (4.1) and eost({1}, {2},..., {n}.8,...,0) = py, GMS
has found an optimal solution and so the approximation ratio is 1.

(2) Let n = m.
Let T} be such that cost(T}) = Zﬂ: 7, Pr = cost(GMS(I)), and let k be the
largest index in T}, If & < m, then T = 1 and so Optys(f) = p1 = o
and GMS([) is an optimal solution.
Now, assume m < k, Following Figure 4.2 we see that

Opt s () = cost(GMS(I)) — pe (4.4)
because of Yr) p; > m - [cost(GMS(I)) — pi] and (4.2).

cost (GME(I}

k
cost(GMS(1)) ~ Optaes(I) < pi < ():m) [k @

(4.4) [4.3) Y i=1

cost(GMS(1)) ~ Optas() _ (Z, i) ﬂc m

{1

LJF‘EME[I] ':'d_-d — T]_PI. J{T”' -

{a.2)

cost({OMSB{I))—py

2023/12/6 12

TRIEARIX BT UERE 7157

Optys(I) 2 pr Zp2a 2 = pp. (4.1)
T"- s
Optyss(1) > L=Vt (4.2)
s
k
e < Z—E—li (4.3)

(1) Let n < m.
Since Optyys(T) = (4.1) and eost({1}, {2},..., {n}.8,...,0) = py, GMS
has found an optimal solution and so the approximation ratio is 1.

(2) Let n = m.
Let T} be such that cost(Ti) = 3 .4 pr = cost{GMS(I)), and let k be the
largest index in T}, If & < m, then T = 1 and so Optys(f) = p1 = o
and GMS([) is an optimal solution.
Now, assume m < k, Following Figure 4.2 we see that

Opt s () = cost(GMS(I)) — pe (4.4)
because of Yr) p; > m - [cost(GMS(I)) — pi] and (4.2).

cost (GME(I}

k
cost(GMS(1)) ~ Optaes(I) < pi < ():m) [k @

(4.4) [4.3) Y i=1

cost(GMS(1)) ~ Optas() _ (Z, i) ﬂc m

{1

LJF‘EME[I] ':'d_-d — T]_PI. J{T”' -

{a.2)

cost({OMSB{I))—py

2023/12/6 13

TRIEARIX BT UERE 7157

Optys(I) 2 pr Zp2a 2 = pp. (4.1)
T"- s
Optyss(1) > L=Vt (4.2)
s
k
e < Z—E—li (4.3)

(1) Let n < m.
Since Optyys(T) = (4.1) and eost({1}, {2},..., {n}.8,...,0) = py, GMS
has found an optimal solution and so the approximation ratio is 1.

(2) Let n = m.
Let T} be such that cost(Ti) = 3 .4 pr = cost{GMS(I)), and let k be the
largest index in T}, If & < m, then T = 1 and so Optys(f) = p1 = o
and GMS([) is an optimal solution.

Now, assume m < k, Following Figure 4.2 we see that
Opt s () = cost(GMS(I)) — pe (4.4)
because of E i1 ' p: > m - [cost(GMS(I)) — pi and (4.2).

cost (GME(I}

k
cost(GMS(1)) ~ Optaes(I) < pi < ():m) [k @

(4.4) [4.3) Y i=1

cost(GMS(1)) ~ Optas() _ (Z, i) ﬂc m

{1

LJF‘EME[I] ':'d_-d — T]_PI. J{T”' -

{a.2)

cost({OMSB{I))—py

2023/12/6 14

TRIEARIX BT UERE 7157

Optys(I) 2 pr Zp2a 2 = pp. (4.1)
T"- s
Optyss(1) > L=Vt (4.2)
s
k
e < Z—E—li (4.3)

(1) Let n < m.
Since Optyys(T) = (4.1) and eost({1}, {2},..., {n}.8,...,0) = py, GMS
has found an optimal solution and so the approximation ratio is 1.

(2) Let n = m.
Let T} be such that cost(T}) = Zﬂ: 7, Pr = cost(GMS(I)), and let k be the
largest index in T}, If & < m, then T = 1 and so Optys(f) = p1 = o
and GMS([) is an optimal solution.
Now, assume m < k, Following Figure 4.2 we see that

Opt s () = cost(GMS(I)) — pe (4.4)
because of Yr) p; > m - [cost(GMS(I)) — pi] and (4.2).

cost (GME(I}

k
cost(GMS(1)) ~ Optaes(I) < pi < ():m) [k @

(4.4) [4.3) Y i=1

cost(GMS(1)) ~ Optas() _ (Z, i) ﬂc m

{1

LJF‘EME[I] ':'d_-d — T]_PI. J{T”' -

{a.2)

cost({OMSB{I))—py

2023/12/6 15

TRIEARIX BT UERE 7157

Optys(I) 2 pr Zp2a 2 = pp. (4.1)
T"- s
Optyss(1) > L=Vt (4.2)
s
k
e < Z—E—li (4.3)

(1) Let n < m.
Since Optyys(T) = (4.1) and eost({1}, {2},..., {n}.8,...,0) = py, GMS
has found an optimal solution and so the approximation ratio is 1.

(2) Let n = m.
Let T} be such that cost(T}) = Zﬂ: 7, Pr = cost(GMS(I)), and let k be the
largest index in T}, If & < m, then T = 1 and so Optys(f) = p1 = o
and GMS([) is an optimal solution.
Now, assume m < k, Following Figure 4.2 we see that

Opt s () = cost(GMS(I)) — pe (4.4)
because of Yr) p; > m - [cost(GMS(I)) — pi] and (4.2).

cost (GME(I}

k
cost(GMS(1)) ~ Optaes(I) < pi < ():m) [k @

(4.4) [4.3) Y i=1

cost(GMS(1)) ~ Optas() _ (Z, i) ﬂc m

{1

LJF‘EME[I] ':'d_-d — T]_PI. J{T”' -

{a.2)

cost({OMSB{I))—py

2023/12/6 16

TRIEARIX BT UERE 7157

Optys(I) 2 pr Zp2a 2 = pp. (4.1)
T"- s
Optyss(1) > L=Vt (4.2)
s
k
e < Z—E—li (4.3)

(1) Let n < m.
Since Optyys(T) = (4.1) and eost({1}, {2},..., {n}.8,...,0) = py, GMS
has found an optimal solution and so the approximation ratio is 1.

(2) Let n = m.
Let T} be such that cost(T}) = Zﬂ: 7, Pr = cost(GMS(I)), and let k be the
largest index in T}, If & < m, then T = 1 and so Optys(f) = p1 = o
and GMS([) is an optimal solution.
Now, assume m < k, Following Figure 4.2 we see that

Opt s () = cost(GMS(I)) — pe (4.4)
because of Yr) p; > m - [cost(GMS(I)) — pi] and (4.2).

cost (GME(I}

k
cost(GMS(1)) ~ Optaes(I) < pi < ():m) [k @

(4.4) [4.3) Y i=1

cost(GMS(1)) ~ Optas() _ (Z, i) ﬂc m

{1

LJF‘EME[I] ':'d_-d — T]_PI. J{T”' -

{a.2)

cost({OMSB{I))—py

2023/12/6 17

XNEENIEMEEZZ D7 AT

Optys(I) 2 pr Zp2a 2 = pp. (4.1)
T"- s
Optyss(1) > L=Vt (4.2)
s
k
e < Z—E—li (4.3)

(1) Let n < m.
Since Optyys(T) = (4.1) and eost({1}, {2},..., {n}.8,...,0) = py, GMS
has found an optimal solution and so the approximation ratio is 1.

(2) Let n = m.
Let T} be such that cost(T}) = Zﬂ: 7, Pr = cost(GMS(I)), and let k be the
largest index in T}, If & < m, then T = 1 and so Optys(f) = p1 = o
and GMS([) is an optimal solution.
Now, assume m < k, Following Figure 4.2 we see that

Opt s () = cost(GMS(I)) — pe (4.4)
because of Yr) p; > m - [cost(GMS(I)) — pi] and (4.2).

cost (GME(I}

k
cost(GMS(1)) ~ Optaes(I) < pi < ():m) [k @

(4.4) [4.3) Y i=1

cost(GMS(1)) ~ Optas() _ (Z, i) ﬂc m

{1

LJF‘EME[I] ':'d_-d — T]_PI. J{T”' -

{a.2)

cost({OMSB{I))—py

2023/12/6 18

TRIERX N EE 717

Algorithm 4.3.3.1.

Input: A graph G = (V,E).
Stepl: S=0
{the cut is considered to be (S,V — S); in fact S can be chosen
arbitrarily in this step};
Step 2: while there exists such a vertex v € V that the movement of v
from one side of the cut (S,V — S) to the other side of
(S,V — 8) increases the cost of the cut.
do begin take a u € V whose movement from one side of (S, V—S)
to the other side of (S,V —.5) increases the cost of the cut,
and move this u to the other side.
end
Output: (S, V - 5).

2023/12/6 19

REEMBEX N E AN RIS R ELEY

Algorithm 4.3.3.1.

Input: A graph G = (V,E).
Stepl: S=0
{the cut is considered to be (S,V — S); in fact S can be chosen
arbitrarily in this step};
Step 2: while there exists such a vertex v € V that the movement of v
from one side of the cut (S,V — S) to the other side of
(S,V — 8) increases the cost of the cut.
do begin take a u € V whose movement from one side of (S, V—S)
to the other side of (S, V —.5) increases the cost of the cut,
and move this u to the other side.
end
Output: (S, V - 5).

2023/12/6 20

TRIE X B bR 1 17

Theorem 4.3.3.3. Algorithm 4.3.8.1 is a polynomial-time 2- appmmmatwn
algorithm for MAX-CuUT.

Proof. Tt is obvious that Algorithm 4.3.3.1 computes a feasible solution to
every given input and Lemma 4.3.3.2 proves that this happens in polynomial
time.

It remains to be proven that the approximation ratio is at most 2. There
is a very simple way to argue that the approximation ratio is at most 2. Let
(Y1,Y2) be the output of Algorithm 4.3.3.1. Every vertex in Y, (Y2) has at
least as many edges to vertices in Y2 (Y7) as edges to vertices in Y (Y2). Thus,
at least half of the edges of the graph is in the cut(Y1,Y5). Since the cost of
an optimal cut cannot exceed |E|, the proof is finished.

2023/12/6 21

Greedy#llLocal Search5 A4 X 77

Algorithm 4.2.1.3 (GMS (GREEDY MAKESPAN SCHEDULE)). Algorithm 4.3.3.1.

Input: = (p1,...,Pn,™M), R, M, P1,...,DPn Positive integers and m > 2.

Step 1: Sort piy -« -, pr. Input: A graph G = (V, E).

e : > o : Stepl: S=0
Ift::‘;gii:ﬁ,f‘omwn e assume Py Z Py 2 v 2 pu in the rest {the cut is considered to be (S,V — S); in fact S can be chosen
Step 2: for i =1 to m do arbitrarily in this step};
begin T;:= {i}; Step 2: while there exists such a vertex v € V' that the movement of v
Time(T;) :=p; from one side of the cut (S,V — S) to the other side of
end (S,V — S) increases the cost of the cut.

{In the initialization step the m largest jobs are distributed to the
m machines. At the end, T; should contain the indices of all jobs
assigned to the ith machine for i = 1,...,m.}

Step 3: for i=m+1to ndo

do begin takeau € V whose movement from one side of (S, V—5)
to the other side of (S, V —.S) increases the cost of the cut,
and move this u to the other side.

begin compute an [such that end
Time(T) = min{ Time(T;)|1 < j < m}; Output: (S, V - §).
T, =T U{i};
Time(T;) := Time(T1) + p:

end

Output: (Th,7T%,...,Tm).

2023/12/6 22

Greedy#llLocal Search5 A4 X 77

m 15054 T [E @R Tgreedyfllocal search® %
e MAX-SAT
e MAX-CL
® |ongest simple path

2023/12/6 23

TRBE AR IX A I

Usually one can be satisfied if one can find a d-approximation algorithm
for a given optimization problem with a conveniently small §. But for some
optimization problems we can do even better. For every input instance x, the
user may choose an arbitrarily small relative error £, and we can provide a
feasible solution to x with a relative error at most €. In such a case we speak
about approximation schemes.

2023/12/6 24

TRBE AR IX A I

Definition 4.2.1.6. Let U = (X}, Yo, L, L;, M, cost, goal) be an optimiza-
tion problem. An algorithm A is called a polynomial-time approximation
scheme (PTAS) for U, if, for every input pair (z,e) € Ly xIRY, A computes
a feasible solution A(z) with a relative error at most €, and Timea(z,e™ 1)
can be bounded by a function® that is polynomial in |z|. If Time(z,e71) can
be bounded by a function that is polynomial in both |x| and £, then we say

that A is a fully polynomial-time approximation scheme (FPTAS) for
U.

2023/12/6 25

TRBE AR IX A I

Definition 4.2.1.6. Let U = (X}, Yo, L, L;, M, cost, goal) be an optimiza-
tion problem. An algorithm A is called a polynomial-time approximation
scheme (PTAS) for U, if, for every input pair (z,e) € Ly xIRY, A computes
a feasible solution A(z) with a relative error at most €, and Timea(z,e™!)
can be bounded by a function® that is polynomial in |z|. If Time(z,e71) can
be bounded by a function that is polynomial in both |x| and £, then we say

that A is a fully polynomial-time approximation scheme (FPTAS) for
U.

m {(REEMRIEPTASHIZ X D7

2023/12/6 26

TRBE AR IX A I

Definition 4.2.1.6. Let U = (X}, Yo, L, L;, M, cost, goal) be an optimiza-
tion problem. An algorithm A is called a polynomial-time approximation
scheme (PTAS) for U, if, for every input pair (z,e) € Ly xIRY, A computes
a feasible solution A(z) with a relative error at most €, and Timea(z,e™!)
can be bounded by a function® that is polynomial in |z|. If Time(z,e71) can
be bounded by a function that is polynomial in both |x| and £, then we say

that A is a fully polynomial-time approximation scheme (FPTAS) for
U.

= L8 kY 13 =z \
m {REEMRBEPTASHIE XY
of computer work). The advantage of PTASs is that the user has the choice of
e in this tradeoff of the quality of the output and of the amount of computer
work Timea(z,e~!). FPTASs are very convenient? because Timea(z,e7!)
does not grow too quickly with 71,

2 Whenever a machine becomes available (free), the next job on the list is assigned
to begin processing on that machine.

3 Remember that Timea(x,c~") is the time complexity of the computation of the
algorithm A on the input (z,).

4 Probably a FPTAS is the best that one can have for a NP-hard optimization
problem.

2023/12/6 27

TRBE AR IX A I

Definition 4.2.1.6. Let U = (X}, Yo, L, L;, M, cost, goal) be an optimiza-
tion problem. An algorithm A is called a polynomial-time approximation
scheme (PTAS) for U, if, for every input pair (z,e) € Ly xIRY, A computes
a feasible solution A(z) with a relative error at most €, and Timea(z,e™!)
can be bounded by a function® that is polynomial in |z|. If Time(z,e71) can
be bounded by a function that is polynomial in both |x| and £, then we say

that A is a fully polynomial-time approximation scheme (FPTAS) for
U.

m {(RIBFRXA)TE T IE?

of computer work). The advantage of PTASs is that the user has the choice of
e in this tradeoff of the quality of the output and of the amount of computer
work Timea(z,e~!). FPTASs are very convenient? because Timea(z,e7!)
does not grow too quickly with 71,

2 Whenever a machine becomes available (free), the next job on the list is assigned
to begin processing on that machine.

3 Remember that Timea(x,c~") is the time complexity of the computation of the
algorithm A on the input (z,).

* Probably a FPTAS is the best that one can have for a NP-hard optimization
problem.

2023/12/6 28

I A A e
RIEXEDRMER T

NPO(I): Contains every optimization problem from NPO for which there
exists a FPTAS.

{In Section 4.3 we show that the knapsack problem belongs to
this class.}

NPO(II): Contains every optimization problem from NPO that has a
PTAS.

{In Section 4.3.4 we show that the makespan scheduling problem
belongs to this class.}
NPO(III): Contains every optimization problem U € NPO such that
(i) there is a polynomial-time J-approximation algorithm for
some 0 > 1, and

(ii) there is no polynomial-time d-approximation algorithm for U
for some d < é (possibly under some reasonable assumption
like P # NP), i.e., there is no PTAS for U.

{The minimum vertex cover problem, MAX-SAT, and A-TSP are

examples of members of this class.}
NPO(IV): Contains every U € NPO such that
(i) there is a polynomial-time f(n)-approximation algorithm for
U for some f:IN — IR¥, where f is bounded by a polyloga-
rithmic function, and

(i) under some reasonable assumption like P # NP, there does
not exist any polynomial-time é-approximation algorithm for
U for any 6 € R™.

{The set cover problem belongs to this class.}

NPO(V): Contains every U € NPO such that if there exists a polynomial-
time f(r)-approximation algorithm for U, then (under some rea-
sonable assumption like P # NP) f(n) is not bounded by any
polylogarithmic function.

{TSP and the maximum clique problem are well-known members
of this class.}

2023/12/6 29

I A A e
RIEXEDRMER T

NPO(I): Contains every optimization problem from NPO for which there
exists a FPTAS.

{In Section 4.3 we show that the knapsack problem belongs to
this class.}

NPO(II): Contains every optimization problem from NPO that has a
PTAS.

{In Section 4.3.4 we show that the makespan scheduling problem
belongs to this class.}
NPO(III): Contains every optimization problem U € NPO such that
(i) there is a polynomial-time d-approximation algorithm for
some 0 > 1, and

(ii) there is no polynomial-time d-approximation algorithm for U
for some d < é (possibly under some reasonable assumption
like P # NP), i.e., there is no PTAS for U.

{The minimum vertex cover problem, MAX-SAT, and A-TSP are

examples of members of this class.}
NPO(IV): Contains every U € NPO such that
(i) there is a polynomial-time f(n)-approximation algorithm for
U for some f:IN — IRY, where f is bounded by a polyloga-
rithmic function, and

(i) under some reasonable assumption like P # NP, there does
not exist any polynomial-time é-approximation algorithm for
U for any 6 € R™.

{The set cover problem belongs to this class.}

NPO(V): Contains every U € NPO such that if there exists a polynomial-
time f(n)-approximation algorithm for U, then (under some rea-
sonable assumption like P # NP) f(n) is not bounded by any
polylogarithmic function.

{TSP and the maximum clique problem are well-known members
of this class.}

2023/12/6 30

1RBE

iz Eestability of approximationgy = X 157

2023/12/6 31

R BE i Festability of approximationgg = X 15 7

The
problem instances of concrete applications may be much easier than the hard-
est ones, even much easier than the average ones. It could be helpful to split
the set of input instances L; of a U € NPO(V) into some (possibly infinitely
many) subclasses according to the hardness of their polynomial-time approx-
imability, and to have an efficient algorithm deciding the membership of any
input instance to one of the subclasses considered. In order to reach this goal
one can use the notion of the stability of approximation.

Informally, one can explain the concept of stability with the following sce-
nario. One has an optimization problem for two sets of input instances L, and
Lo, Ly C Lj. For L there exists a polynomial-time -approximation algorithm
A for some 6 > 1, but for L, there is no polynomial-time ~y-approximation
algorithm for any > 1 (if NP is not equal P). One could pose the following
question: “Is the use of the algorithm A really restricted to inputs from L;?”
Let us consider a distance measure d in L, determining the distance d(z) be-
tween L; and any given input x € Lo — L;. Now, one can look for how “good”
the algorithm A for the inputs z € Ly — Ly is. If, for every k > 0 and every x
with d(z) < k, A computes a 7, s-approximation of an optimal solution for z
(7k,s5 is considered to be a constant depending on k and 4 only), then one can
say that A is “(approximation) stable” according to the distance measure d.

2023/12/6 32

TRBE AR IX A I

Definition 4.2.3.1. Let U = (X}, Yo, L, Ly, M, cost, goal) and U =
(X1,X0,L,L, M, cost, goal) be two optimization problems with Ly C L. A
distance function for U according to Lj is any function hy : L — R>0
satisfying the properties

(i) hp(z) =0 for every x € Ly, and
(ii) h is polynomial-time computable.

Let h be a distance function for U according to L;. We define, for anyr € R™,

Ball, p(Ly) = {we L|h(w) <r}.%

2023/12/6 33

TRAE FRREIX e 7

Definition 4.2.3.1. Let U = (X}, Yo, L, Ly, M, cost, goal) and U =
(X1, X0, L, L, M, cost, goal) be two optimization problems with Ly C L. A
distance function for U according to Lj is any function hy : L — R>0
satisfying the properties

(i) hp(z) =0 for every x € Ly, and
(ii) h is polynomial-time computable.

Let h be a distance function forﬁ according to L;. We define, for any r € R*,
Ball, p(Ly) = {we L|h(w) <r}.%

L, Ball, (L))

2023/12/6

TREE MR e

Let A be a consistent algorithm for U, and let A be an e-approzimation al-
gorithm for U for some ¢ € R”'. Let p be a positive real. We say that
A is p-stable according to h if, for every real 0 < r < p, there ex-
ists a 6., € R”" such that A is a §,.-approzimation algorithm for U, =
(X1, %Yo, L, Ball, (L), M, cost, goal).

A is stable according to h if A is p-stable according to h for every
peR'. We say that A is unstable according to h if A is not p-stable for
anyp € R™.

For every positive integer v, and every function f, : IN — R we say that
A is (r, fr(n))-quasistable according to h if A is an f.(n)-approzimation
algorithm for U, = (X1, X0, L, Ball, 1,(L), M, cost, goal).

L, Ballr,h(LI)

2023/12/6

TREE MR e

Let A be a consistent algorithm for U, and let A be an e-approzimation al-
gorithm for U for some ¢ € R”'. Let p be a positive real. We say that
A is p-stable according to h if, for every real 0 < r < p, there ex-
ists a 6., € R”" such that A is a §,.-approzimation algorithm for U, =
(X1, %Yo, L, Ball, (L), M, cost, goal).

A is stable according to h if A is p-stable according to h for every
peR'. We say that A is unstable according to h if A is not p-stable for
anyp € R™.

For every positive integer v, and every function f, : IN — R we say that
A is (r, fr(n))-quasistable according to h if A is an f.(n)-approzimation
algorithm for U, = (X1, X0, L, Ball, 1,(L), M, cost, goal).

€-approximation _

J, .~approximation
L, Ballr,h(LI)

r<p

2023/12/6

IR E K42 stable, FAFPLAZPTASHL?

Let A be a consistent algorithm for U, and let A be an e-approzimation al-
gorithm for U for some ¢ € R, Let p be a positive real. We say that
A is p-stable according to h if, for every real 0 < r < p, there ex-
ists a 0rs € R>! such that A is a Or e -approximation algorithm for U, =
(X1,%Xo,L,Ball, ,(L1), M, cost, goal).

A is stable according to h if A is p-stable according to h for every
p e RY. We say that A is unstable according to h if A is not p-stable for
anype RY.

Definition 4.2.1.6. Let U = (X, X, L, Ly, M, cost, goal) be an optimiza-
tion problem. An calgorithm A is called a polynomial-time approximation
scheme (PTAS) for U, if, for every input pair (,€) € Ly xIR™, A computes
a feasible solution A(z) with a relative error at most €, and Timea(z,e™ ")
can be bounded by a function® that is polynomial in |z|. If Timea(x,c71) can
be bounded by a function that is polynomial in both |x| and ™', then we say

that A is a fully polynomial-time approximation scheme (FPTAS) for
U.

2023/12/6 37

IR E K42 stable, FAFPLAZPTASHL?

We see that the existence of a stable c-approximation algorithm for U
immediately implies the existence of a d, .-approximation algorithm for U,
for any r > 0. Note that applying the concept of stability to PTASs one
can get two different outcomes. Let us consider a PTAS A as a collection of
polynomial-time (1 + ¢)-approximation algorithms A, for every ¢ € R™. If
A; is stable according to a distance measure h for every € > 0, then we can
obtain either

(i) a PTAS for U, = (X1, X0, L, Ball, 1n(L1), M, cost, goal) for every r € R"
(this happens, for instance, if 6, = 1 + ¢ f(r), where f is an arbitrary
function), or

(ii) a d,c-approximation algorithm for U, for every r € IR*, but no PTAS for
U, for any r € IR™ (this happens, for instance, if §,. = 1+ +).

+ARHEEPTAS? HARHERE?
o ﬂﬂf%ﬁ’: WM T 7182

2023/12/6 38

1R BE FRFEIX = Fhdistance functionfs ?

. N c{{u,v})) _
dist ({7,) = max {'I}. max {CI:-[mp}] el o1 1w, vpe V(G),
u#ﬂ,u#p,"#}?}},
dist (G, c) = max {{}, max {—Z—T%ﬁm} =1 ‘u-.r.r € V(@) and

%= P, P2, Pm = v 15 a simple path between u and v

of length at most & (e, m+ 1= k]}}

distance (7, ¢) = max{disty (G,) |2 < k < |V(G)| — 1}

2023/12/6 39

H 4 2 —FiF Fydistance function?

42 —FiFAYdistance function?

an additional assumption on the “parameters” of the
input instances leads to an essential decrease in the hardness of the problem.

It should be clear that the investigation of the stability according to a distance
function h is of interest only if h reasonably “partitions” the set of problem
instances.

The best
approach to define a distance function is to take a “natural” function according
to the specification of the set L of input instances.

2023/12/6 41

42 —FiFAYdistance function?

an additional assumption on the “parameters” of the
input instances leads to an essential decrease in the hardness of the problem.

It should be clear that the investigation of the stability according to a distance
function h is of interest only if h reasonably “partitions” the set of problem
instances.

The best
approach to define a distance function is to take a “natural” function according
to the specification of the set L of input instances.

B {REEAFENM o) FUE X —Fhdistance functionfZ ?

2023/12/6 42

OT

m BRMSHAIMAX-CUTSh, IEUE AR AT #AE TR, Flan
SCP (JHE:£4.3.2.11) . SKP (JHE£4.3.4.1F14.3.42) =,
THEMED2FEEER (RPREZ1#%kE LAGF, B L/
HALRBAEIRVSERRN) |, EE50FNEELNRITS 0,
B R E R T EE AYIE BRI AR

2023/12/6 43

	3-14 近似算法的基本概念
	什么样的算法可以称作近似算法？
	什么样的算法可以称作近似算法？
	你能解释这些概念吗？
	你能解释这些概念吗？
	你能解释这些概念吗？
	你能解释这些概念吗？
	你还记得这个问题吗？
	你理解这个算法了吗？
	你理解这段证明了吗？
	你理解这段证明了吗？
	你理解这段证明了吗？
	你理解这段证明了吗？
	你理解这段证明了吗？
	你理解这段证明了吗？
	你理解这段证明了吗？
	你理解这段证明了吗？
	这个算法的近似比是多少？好不好？
	你理解这个算法了吗？
	你能解释这个算法的时间复杂度吗？
	你理解这段证明了吗？
	Greedy和Local Search有什么区别？
	Greedy和Local Search有什么区别？
	你能解释这些概念吗？
	你能解释这些概念吗？
	你能解释这些概念吗？
	你能解释这些概念吗？
	你能解释这些概念吗？
	你理解这套分类体系了吗？
	你理解这套分类体系了吗？
	你能解释stability of approximation的意义吗？
	你能解释stability of approximation的意义吗？
	你能解释这些概念吗？
	你能解释这些概念吗？
	你能解释这些概念吗？
	你能解释这些概念吗？
	如果算法A是stable，那么A是PTAS吗？
	如果算法A是stable，那么A是PTAS吗？
	你能解释这三种distance function吗？
	什么是一种好的distance function？
	什么是一种好的distance function？
	什么是一种好的distance function？
	OT

