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A1 : binary search trees
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TREE-SEARCH (X, k)

1
2

4

if x ==NIL or k == x.key
return x
3 ifk < x.key
return TREE-SEARCH(Xx.left. k)
5 else return TREE-SEARCH (x.right. k)
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[B)8A1: binary search trees ()

ITERATIVE-TREE-SEARCH (X, k)
1 while x # NIL and k # x.key
2 if k < x.key

3 x = x.left

4 else x = x.right

5 returnXx




[B)8A1: binary search trees ()

TREE-MINIMUM (X) TREE-MAXIMUM (X)

1 while x.left # NIL 1 while x.right # NIL
2 X = x.left 2 X = x.right

3 returnx 3 returnx

o XMNEIARIEH AT AT
o PREEMIIA AT Z I AR ?
o PREEUEMAEANTHY AR PENS 7




[B)8A1: binary search trees ()

TREE-SUCCESSOR (X)

1 if x.right # NIL

2 return TREE-MINIMUM (x.right)
3 y=x.p

4 while y # NIL and x == y.right

5 X =y

6 y=y.p

7 returny
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IBJgR1: binary search trees ()
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TREE-INSERT(T, z)

y = NIL

x = T.mot

while x # NIL
y=2Xx
if z.key < x.key

x = x.left

else x = x.right

zp=Yy

if y==NIL
T.root = Z

elseif z.key < y.key
y.left = 2

else y.right = z

—O O 00 NN B W N -

—
2

t

L

>

S — PR Y binary search tree?
P AR iR 2

// tree T was empty




|B)&X1: binary search trees (&)
o RIS T AR T 02

BST 17 43 B I B AR R 1 2, ﬁk ............ b
o ST AR M - «
g R ? - &




[BJR%1: binary search trees ()
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/ Given two strings @ = dod; ...dp and b = bgby . . . by, where each a; and each b;
15 1n some ordered set of characters, we say that string a 1s lexicographically less
than string b if either

l. there exists an integer j, where 0 = j < min(p, g), such that a; = b; for all
i =0.1.....j—1land a; < b;,or

2. p<=ganda; =b;foralli =0,1,...,p

For example, if a and b are bit strings, then 10100 < 10110 by rule 1 (letting

J = 3) and 10100 = 101000 by rule 2. This ordering is similar to that used in
English-language dictionanes.

The radix tree data structure shown n Figure 12.5 stores the bit strings 1011,

10, 011, 100, and 0. When searching for a key a = apa, ...a,, we go left at a

node of depth i if a; = 0 and right if a; = 1. Let 5 be a set of distinct bit strings

I‘E‘[ ;%E:] whose lengths sum to 7. Show how to use a radix tree to sort § lexicographically

in &(n) time. For the example in Figure 12.5, the output of the sort should be the
sequence 0, 011, 10, 100, 1011.

0] /@i2: Flhash tablefH LG, PAEAEN dictionary, MR B e 2
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Hash tables are commonly said to have expected O(1) insertion and deletion times, but

this is only true when considering computation of the hash of the key to be a constant
time operation. When hashing the key is taken into account, hash tables have expected
O(k) insertion and deletion times, but may take longer in the worst-case depending on

how collisions are handled. Radix trees have worst-case O(k) insertion and deletion.

Figure 12.5 A radix tree storing the it stnngs 1011, 10,011, 100, and . We can determine each
node’s key by traversing the simple path from the oot to that node. There 15 no need, therefore, to
store the keys in the nodes; the keys appear here for dlustrative purposes only. Nodes are heavily
shaded 1f the kKeys corresponding to them are not in the tree; such nodes ame present only o establish

a path to other nodes. /
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IB]Em2: red-black trees

o red-black treefe - 2+ A FEE ?
* No simple path from the root to a leaf is more than twice as long as
any other.

o N AZHAXR-THEE?

Every node is either red or black.

The root 1s black.

ol .

Every leaf (NIL) 1s black.
If a node 1s red, then both its children are black.

wnoos

For each node, all simple paths from the node to descendant leaves contain the
same number of black nodes.




[BJEH2: red-black trees (4
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|B)R2:

o iBitfEz, y, xS N2
e y moves into z’s position.
e X moves into y’s position.
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e Givesy the same color as z.
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o ﬁnﬁmﬁzﬁ@ﬁy (black)
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e X moves into y’s position.

e Push y’s blackness onto x.
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[BJRR2: red-black trees

An AVL free is a binary search tree that is height balanced: for each node x, the
heights of the left and right subtrees of x differ by at most 1. Toimplement an AVL
tree, we maintain an extra attribute in each node: x.h is the height of node x. As
for any other binary search tree T, we assume that T.root points to the root node.

Toinsert into an AVL tree, we first place a node into the appropriate place in bi-
nary search tree order. Afterward, the tree might no longer be height balanced.
Specifically, the heights of the left and right children of some node might differ
by 2. Describe a procedure BALANCE(x ), which takes a subtree rooted at x
whose left and right children are height balanced and have heights that differ
by at most 2, i.e., |x.right.h — x.left.h| < 2, and alters the subtree rooted at x
to be height balanced.
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[BJRR2: red-black trees
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