Al SO 0

o HEFr 5L 4%

RALHF 3T
e TCH7. 8. 9%

BJER1: Quicksort

e What 1s the running time of Quicksort when array A
contains distinct elements and 1s sorted 1n decreasing order?

e What 1s the running time of Quicksort when all elements of

array A have the same value?

e What 1s the best case?
What 1s the worst case?

e How about the average case?

n
/ \ ——-
0 n—1
N (n-1)2 (n—1)12

(=102 -1 (n—1y2
@ bad good

average?

Ordering the Elements with 3 Colors

e Suppose an array A consists of n element,
each of which 1s red, white or blue. Design a
linear algorithm to sort the array so that all
the reds come before the whites, and which
come before all the blues. The only
operations permitted are:

e Examine(A4, i) — report the color of the ith
element, and

e Swap(4, i, j) — swap the ith element of A with the
Jjth element.

Matching Bolts and Nuts

* You are given a collection of n bolts of
different widths and n corresponding nuts.
You can determine whether the nut 1s
e larger than the bolt
e smaller than the bolt
e matches the bolt exactly

* However, there 1s no way to compare two
nuts together or two bolts together.

e The problem is to match each bolt to 1ts nut.

(-

B8R 1: Quicksort &)

o RANDOMIZED-QUICKSORT 5 QUICKSORTHA H4 A
Gk
o XMUAFMHAEN?

¢ RANDOMIZED-QUICKSORT f{Jiz 47 [7] 3= B2 45 27 AF

—t
7
AR
RANDOMIZED-QUICKSORT (A, p.r) RANDOMIZED-PARTITION(A, p,r) PARTITION(A, p.1)
1 ifp<r 1 i = RaNnDOM(p,r) 1 x = Alr]
2 g = RANDOMIZED-PARTITION (4, p,r) 2 exchange A[r] with A[i] 2 i=p-1
3 RANDOMIZED-QUICKSORT(A. p.g — 1) 3 return PARTITION(A, p.r) 3 for .{ = .{J tor—1
4 RANDOMIZED-QUICKSORT(A, g + 1,7) ;’ if A[j] 5;: |
I =1
6 exchange A[i] with A[/]
7 exchange A[i + 1] with A[r]
& returni + 1

/

|
2
3
4

(-

RANDOMIZED-QUICKSORT(A, p.r)

B8R 1: Quicksort &)

o RANDOMIZED-QUICKSORT 5 QUICKSORTHA H4 A

il
o XFHAEAHMF AN

e In exploring the average-case behavior of quicksort, we have made
an assumption that all permutations of the input numbers are equally
likely. In an engineering situation, however, we cannot always
expect this assumption to hold.

¢ RANDOMIZED-QUICKSORT f{Jiz 47 [7] 3= B2 45 27 AF

2R ?

it p<r 1
¢ = RANDOMIZED-PARTITION (A, p.r) 2
RANDOMIZED-QUICKSORT(A, p.g — 1) 3
RANDOMIZED-QUICKSORT(A, ¢ + 1,7)

[= RANDOM(p,r)
exchange A[r] with A[i]
return PARTITION(A, p.r)

1

2
3
4
5
6
7
8

RANDOMIZED-PARTITION(A, p,r) PARTITION(A, p.1)

x = Alr]
i=p—1

3 for j = ptor—1

if A[j] = x
i=i+1
exchange A[i] with A[/]
exchange A[i + 1] with A[r]
return / + 1

/

|aJ@R2: Sorting in linear time

o f14 MY ffiicomparison sorts ?

o R/ M decision treef) ?

v '? comparison sorts iz 1T B [A] G H 4 KR ?
o BHZ/MNHTF?
CHZLE?

|aJ@R2: Sorting in linear time

o f 24 N ficomparison sorts?

e The sorted order they determine is based only on
comparisons between the input elements

o PRAE/E L Blfifdecision treef] ?
‘B 5 comparison sorts M IEATH [A]H 1A KR AR ?
o« BEHZ/DANIF?
s BEHZDE?

o

|aJ@R2: Sorting in linear time

o YREEfATIAcounting sort AT L FENL 2

o N4 Esgstablel]? (44 MYstable? QUICKSORT 2
15?2)
TREEABER I e — P BN ARG R, IR IRIE
stable?

o 'ERIMEHAMRLE /R (Bhal) ?

COUNTING-SORT(A, B. k) L N S 4 5 6

e \EEELEBDE] o 0o s s » DR

2 fori =0tok 001 2 3 4 5 cl2]2]a]7[7]8] 001 2 3 :

3 Clij=0 c[2Jo]2]3]0]1] c[2]2]a]6]7]8]

4 for j = lto A.length

5 ClA[j]l = C[ANT+ 1 (a) () ©

6/ CJ[i] now contains the number of elements equal to i.

7 fori = 1tok 2 3 4 5 6 7 8 2 3 4 5 6 7 8

: ”C‘[?][f']=c["]_+fﬁ[l’—1lu et e) BI Iﬂl HENEN BI Iﬂl NNEEN EEREEEE
i] now contains the number of elements less than or equal to i. .

10 for j = A.length downto 1 o2 L glofof2]a]3]s]a]s]

1 BICIAL]]] = AL/ cl1]2]4]6 | | | clr]2fa]s]7]8]

12 C [,‘] [f]] =C [A[j]] -1 (d) (©) ()

/

\

|8)X2 : Sorting in linear time (&)

o YREEMTIAradix sort I HAT It FENL 2

o Nt AT E I — stable sort?
g ey M E AL TG P 2

o ARUAT I i

We have some flexibility in how to break each key into

digits.
o 'EHIMEHA ML RFIRME (s ?

RADIX-SORT(A, d) 329 720 720 329
_ 457 355 329 355
I fori =Ttod 657 436 436 436
2 use a stable sort to sort array 4 on digit i 839 e 457 waniie 839w 457
436 657 355 657
720 329 457 720
355 839 657 839

o

|B)R3: selection problem

o T asgik P A ?

o TFmITTEim/NIT, TELEZDR? Nt

A2
0 ijﬁ%ﬂ%ﬁﬁ%ﬂ%d\ﬁ, Ttz bR Nt
A7

o A " RKou, FmEHZ KT A4

|B)R3: selection problem

= 1 H
o fTAFEITEIA] 7
Input: A set A of n (distinct) numbers and an integer §, with | < i < n.

Output: The element x € A that is larger than exactly i — | other elements of 4.

-?ﬂ%ﬁﬁﬁ%$ﬁ,%gwﬁ%&%?%ﬁ
A7

-%ﬂ%ﬁﬁﬂ%¢ﬁ,%gwﬁ%¢ﬁ?%ﬁ
A7

o A " RKou, FmEHZ KT A4

Finding the Second-Largest Key

e Using FindMax twice is a solution with 2n-3 comparisons.

e For a better algorithm, the 1dea 1s to collect some useful
information from the first FindMax to decrease the number
of comparisons in the second FindMax.

e Useful information: the key which lost to a key other than
max cannot be the second-Largest key.

e The worst case for twice FindMax 1s “No information”.(x,
1s Max)

Second Largest Key by Tournament

The length of the longest
path is| lgn |, as many as
those compared to max at
most.

X, 1S max
Only x,, X3, X5, X¢
() may be the second
largest key.

Larger key
bubbles up

Analysis of Finding the Second

e Any algorithm that finds secondLargest must also
find max before. (n-1)

e The secondLargest can only be 1n those which lose
directly to max.

* On 1ts path along which bubbling up to the root of
tournament tree, max beat rlgn_| keys at most.

e Pick up secondLargest. (rlgn_| -1)
° p+ rlgn_|-2

Lower Bound by Adversary

e Theorem

e Any algorithm (that works by comparing keys)
to find the second largest 1n a set of n keys must
do at least nH lgn |-2 comparisons in the worst
case.

e Proof

There 1s an adversary strategy that can force any
algorithm that finds secondLargest to compare
max to | 1gn | distinct keys.

Note: for one comparison,

Wei ghted Key the weight increasing is no

more than doubled.

e Assigning a weight w(x) to each key. The

initial values are ali’1.
* Adversary rules:
Case Adversary reply Updating of weights
wpw) < oy =) ())0
wix)=w(y)>0 >y W) =w(x)wiy); w(y)=0
W(y)>w(x) g w(y)=w(x)twiy); w(x)=0
w(x)=w(y)=0 Consistent with previous replies No change /

Z.ero=L.oss

/

		Case

		Adversary reply

		Updating of weights

		w(x)>w(y)

		x>y

		w(x):=w(x)+w(y); w(y):=0

		w(x)=w(y)>0

		x>y

		w(x):=w(x)+w(y); w(y):=0

		w(y)>w(x)

		y>x

		w(y):=w(x)+w(y); w(x):=0

		w(x)=w(y)=0

		Consistent with previous replies

		No change

Lower Bound by Adversary: Details

e Note: the sum of weights 1s always n.

e Let x 1s max, then x 1s the only nonzero weighted
key, that 1s w(x)=n.
e By the adversary rules:
W)= 2w (x)

e Let K be the number of comparisons x wins against
previously undefeated keys:

n=wy (x)<2%w,(x)=2%
* So, Kzrlgn—|

Tracking the Losers to MAX

To be filled
with winners

Building a heap

structure of 2n-1
entries, using n-1
extra space

C’gg (39 Gy nbsltries in mnput

Adversary Argument

e Example Let b =b,b, by b, b5 be a bit string
of length 5, 1.e. €{0,1} b, for 1<1<5,
Consider the problem of determining
whether b contains three consecutive ones,
1.e. whether or not 6 contains the substring
111. We restrict our attention to those
algorithms whose only allowable operation
1s to peek at a bit.

First Glance...

e Obviously 5 peeks are sufficient.

* A decision tree argument provides the fact
that at least one peek 1s necessary.

included

Adversary Strategy

e Consider any algorithm for this problem and
start 1t on an unspecified bit / string of

length 5. The adversary strategy 1s to answer
0 to any b1t peek, unless that answer would

prove that b does not contain three
consecutive ones. 0olol1l1l1

1lzl 1 0/0[(0[1]0
b, |b, b, |b, by | | 0] 0 X |1|X

Daemon Algorithm: Peek

e Letx=11111 and y = 00000

e Function flip(u,i) |
. .. Peek(i)
e which takes a bit strin

‘1. 1f flip(x, i) contains
to 1, or 1 to 0), then re s sl 1117

* When the algorithm 2. x « #lip(x, i)
Daemon performs th¢3. answer 0
4. else

5. v «flip(y, i)
6. answer |

Lower Bound by Adversary Strategy

e [f only 3 peeks have been performed, then y
can contain at most 2 ones.

e To prove this, assume that after peeking at 3 bits, y
contains 3 ones. Then it must be the case that if any
of those bits were flipped in x =11111, then x would
not contain the substring 111. But there are not 3
such bits in x =11111.

e If only 3 peeks are performed, y cannot contain
the substring 111.

e Algorithm with 3 peeks could not possibly be
correct

e [f the verdict 1s yes, we can claim that b =y
e Else 1f the verdict 1s no, we can claim that b = x

(-

Possible Solution

* The height of this decision tree 1s 4, by the
above proof, this is the optimal algorithm.

//0//3\ |

. e
N/4\ 4/1\Y
VAN / N\

No Yes No Yes

|AJ@R3: selection problem (4

* JREETEIIRRANDOMIZED-SELECT [HUAT
LFENS ?
o ‘T Ibest casefworst case 7l /&4 4 ?

o PR A U IEARI 2

RANDOMIZED-SELECT (A, p,r.i)

1 p==r

2 return A[p]

3 g = RANDOMIZED-PARTITION (A, p.r)

4 k=g—p+1

5 ili==k /f the pivot value is the answer

6 return A[g]

T elseil i <k

B return RANDOMIZED-SELECT (A, p.g — 1,1)

9 else return RANDOMIZED-SELECT(A,qg + 1.1, i — k)

|AJ@R3: selection problem (4

o REETRIIASELECT I HUAT I FENL, 2
o NBFHTNICEAT AT ? 3MTAMT?

/L-I-Ll

}D{I} ifn < 140 ,
Tin) = _ »
T([n/51+ T(In/10+ 6) + O(n) ifn = 140.

Weighted Median

e For n distinct elements x, x,,...,x,
e Positive weights w, w,,...,.w

¢ Zn:wi =1
i=1

n

e Weighted (lower) median: x, satistying

o 1 and
x;kwi < :

A S

A

5|A)a

o IHD5UL L, BRRATESUL S T EEER

H15 2K

=R =

° HEIN

¥ (CRiETHE) o [&R/
P /DI HE € AT B . IXIRAT 2
LY, JFi

A A U

o RELF Tk KME. I/ME. %= KIH

o {5 5 HIT

)

|/
J

-

kth Largest Element in Two Arrays

* G1ven two sorted arrays with n» and m
elements respectively, design an algorithm
to find the Ath largest element 1n the totally
(m+n) elements 1n O (logm + logn) and
explain the time complexity.

on[
/I\'

IREL

€€ -

A R IE

=\ S =F

AN AR
SZIL
v 2+ 4. 57 F

AN

o HnNItE 2 CHET I
o Hin N ILER e ARART

H B B/
H i/ R H A3

R HATEIX

PR E I T A

Finding the “Heavy” Element

e Find the element i with freq(i) > n/2 1n an
array of n elements. Here, freq(i) 1s defined
as the number of occurrence of i 1n the array.

	计算机问题求解 – 论题2-7
	问题1：Quicksort
	Ordering the Elements with 3 Colors
	Matching Bolts and Nuts
	问题1：Quicksort (续)
	问题1：Quicksort (续)
	问题2：Sorting in linear time
	问题2：Sorting in linear time
	问题2：Sorting in linear time
	问题2：Sorting in linear time (续)
	问题3：selection problem
	问题3：selection problem
	Finding the Second-Largest Key
	Second Largest Key by Tournament
	Analysis of Finding the Second
	Lower Bound by Adversary
	Weighted Key
	Lower Bound by Adversary: Details
	Tracking the Losers to MAX
	Adversary Argument
	First Glance…
	Adversary Strategy
	Daemon Algorithm: Peek
	Lower Bound by Adversary Strategy
	Possible Solution
	问题3：selection problem (续)
	问题3：selection problem (续)
	Weighted Median
	赛马问题
	kth Largest Element in Two Arrays
	最小未出现自然数
	Finding the “Heavy” Element

