
排序与选择

课程研讨

 TC第7、8、9章

计算机问题求解 – 论题2-7

问题1：Quicksort
 What is the running time of Quicksort when array A

contains distinct elements and is sorted in decreasing order?
 What is the running time of Quicksort when all elements of

array A have the same value?

 What is the best case?
What is the worst case?

 How about the average case?

5 bad good average?

Ordering the Elements with 3 Colors

6

 Suppose an array A consists of n element,
each of which is red, white or blue. Design a
linear algorithm to sort the array so that all
the reds come before the whites, and which
come before all the blues. The only
operations permitted are:
Examine(A, i) – report the color of the ith

element, and
 Swap(A, i, j) – swap the ith element of A with the

jth element.

Matching Bolts and Nuts
You are given a collection of n bolts of

different widths and n corresponding nuts.
You can determine whether the nut is
 larger than the bolt
 smaller than the bolt
matches the bolt exactly

However, there is no way to compare two
nuts together or two bolts together.

 The problem is to match each bolt to its nut.

问题1：Quicksort (续)

 RANDOMIZED-QUICKSORT与QUICKSORT有什么不
同？

 这种改变有什么意义？
 In exploring the average-case behavior of quicksort, we have made

an assumption that all permutations of the input numbers are equally
likely. In an engineering situation, however, we cannot always
expect this assumption to hold.

 RANDOMIZED-QUICKSORT的运行时间主要耗费在什
么操作？

8

问题1：Quicksort (续)

 RANDOMIZED-QUICKSORT与QUICKSORT有什么不
同？

 这种改变有什么意义？
 In exploring the average-case behavior of quicksort, we have made

an assumption that all permutations of the input numbers are equally
likely. In an engineering situation, however, we cannot always
expect this assumption to hold.

 RANDOMIZED-QUICKSORT的运行时间主要耗费在什
么操作？

9

问题2：Sorting in linear time
 什么叫做comparison sorts？
 The sorted order they determine is based only on

comparisons between the input elements
 你是怎么理解decision tree的？
它与comparison sorts的运行时间有什么关系？
 它有多少个叶子？

 它有多少层？

11

问题2：Sorting in linear time
 什么叫做comparison sorts？
 The sorted order they determine is based only on

comparisons between the input elements
 你是怎么理解decision tree的？
它与comparison sorts的运行时间有什么关系？
 它有多少个叶子？

 它有多少层？

12

问题2：Sorting in linear time
 你能简述counting sort的执行过程吗？

 为什么它是stable的？（什么叫stable？QUICKSORT是
吗？）
你能不能将最后一步改为从左往右扫描，并仍保证
stable？

 它的使用有哪些局限性（缺点）？

13

问题2：Sorting in linear time (续)

 你能简述radix sort的执行过程吗？

 为什么它需要调用一个stable sort？
能不能改为从高位开始排序？

 你如何理解
We have some flexibility in how to break each key into
digits.

 它的使用有哪些局限性（缺点）？

14

问题3：selection problem
 什么是选择问题？

 找到最大元或最小元，需要比较多少次？为什
么？

 找到最大元和最小元，需要比较多少次？为什
么？

 找到第二大元，需要比较多少次？为什么？

16

问题3：selection problem
 什么是选择问题？

 找到最大元或最小元，需要比较多少次？为什
么？

 找到最大元和最小元，需要比较多少次？为什
么？

 找到第二大元，需要比较多少次？为什么？

17

Finding the Second-Largest Key
 Using FindMax twice is a solution with 2n-3 comparisons.

 For a better algorithm, the idea is to collect some useful
information from the first FindMax to decrease the number
of comparisons in the second FindMax.

 Useful information: the key which lost to a key other than
max cannot be the second-Largest key.

 The worst case for twice FindMax is “No information”.(x1
is Max)

Second Largest Key by Tournament

1 2

3 4 5 6 7 8 92

2 5 6 9

2 6

2

x2 is max
Only x1, x3, x5, x6
may be the second
largest key.

Larger key
bubbles up

The length of the longest
path is lgn , as many as
those compared to max at
most.

Analysis of Finding the Second
 Any algorithm that finds secondLargest must also

find max before. (n-1)
 The secondLargest can only be in those which lose

directly to max.
 On its path along which bubbling up to the root of

tournament tree, max beat lgn keys at most.
 Pick up secondLargest. (lgn -1)
 n+ lgn-2

Lower Bound by Adversary
 Theorem
Any algorithm (that works by comparing keys)

to find the second largest in a set of n keys must
do at least n+lgn-2 comparisons in the worst
case.

 Proof

There is an adversary strategy that can force any
algorithm that finds secondLargest to compare
max to lgn distinct keys.

Assigning a weight w(x) to each key. The
initial values are all 1.

Adversary rules:

Case Adversary reply Updating of weights
w(x)>w(y) x>y w(x):=w(x)+w(y); w(y):=0
w(x)=w(y)>0 x>y w(x):=w(x)+w(y); w(y):=0
w(y)>w(x) y>x w(y):=w(x)+w(y); w(x):=0
w(x)=w(y)=0 Consistent with previous replies No change

Weighted Key
Note: for one comparison,
the weight increasing is no
more than doubled.

Zero=Loss

		Case

		Adversary reply

		Updating of weights

		w(x)>w(y)

		x>y

		w(x):=w(x)+w(y); w(y):=0

		w(x)=w(y)>0

		x>y

		w(x):=w(x)+w(y); w(y):=0

		w(y)>w(x)

		y>x

		w(y):=w(x)+w(y); w(x):=0

		w(x)=w(y)=0

		Consistent with previous replies

		No change

Lower Bound by Adversary: Details
 Note: the sum of weights is always n.
 Let x is max, then x is the only nonzero weighted

key, that is w(x)=n.
 By the adversary rules:

wk(x)≤ 2wk-1(x)
 Let K be the number of comparisons x wins against

previously undefeated keys:
n=wK(x)≤2Kw0(x)=2K

 So, K≥lgn

Tracking the Losers to MAX

x1 x2 x3 x4 x5 x6

x7 x8 x9

x8

x10

x8

x8

x8
Building a heap
structure of 2n-1
entries, using n-1
extra space

n entries in input

To be filled
with winners

Adversary Argument

25

 Example Let b = b1b2 b3 b4 b5 be a bit string
of length 5, i.e. ∈{0,1} bi for 1≤ i ≤ 5.
Consider the problem of determining
whether b contains three consecutive ones,
i.e. whether or not b contains the substring
111. We restrict our attention to those
algorithms whose only allowable operation
is to peek at a bit.

First Glance…

26

Obviously 5 peeks are sufficient.
A decision tree argument provides the fact

that at least one peek is necessary.

included

useless

Adversary Strategy

27

 Consider any algorithm for this problem and
start it on an unspecified bit b string of
length 5. The adversary strategy is to answer
0 to any bit peek, unless that answer would
prove that b does not contain three
consecutive ones.

b1 b2 b3 b4 b5

1 2 3

0 0 × 1 ×

0 0 1 1 1
0 0 0 1 0

Daemon Algorithm: Peek

28

 Let x =11111 and y = 00000
 Function flip(u,i)
which takes a bit string u and flips it’s ith bit (0

to 1, or 1 to 0), then returns the new bit string.
When the algorithm peeks at bit i, the

Daemon performs the algorithm Peek(i).

Peek(i)
1. if flip(x, i) contains

the substring 111
2. x ← flip(x, i)
3. answer 0
4. else
5. y ← flip(y, i)
6. answer 1

Lower Bound by Adversary Strategy

29

 If only 3 peeks have been performed, then y
can contain at most 2 ones.
 To prove this, assume that after peeking at 3 bits, y

contains 3 ones. Then it must be the case that if any
of those bits were flipped in x =11111, then x would
not contain the substring 111. But there are not 3
such bits in x =11111.

 If only 3 peeks are performed, y cannot contain
the substring 111.

 Algorithm with 3 peeks could not possibly be
correct
 If the verdict is yes, we can claim that b = y
 Else if the verdict is no, we can claim that b = x

Possible Solution

30

 The height of this decision tree is 4, by the
above proof, this is the optimal algorithm.

0

0

1

1

问题3：selection problem (续)

你能简述RANDOMIZED-SELECT的执行
过程吗？

它的best case和worst case分别是什么？

你会把递归改为迭代吗？

31

问题3：selection problem (续)

你能简述SELECT的执行过程吗？

如果每组7个元素行不行？3个行不行？

32

Weighted Median

33

 For n distinct elements x1, x2,…,xn
 Positive weights w1, w2,…,wn

Weighted (lower) median: xk satisfying
 and

∑
=

=
n

i
iw

1
1

2
1

<∑
< ki xx

iw

2
1

≤∑
> ki xx

iw

赛马问题

34

共有25匹马，每次可选5匹马进行比赛，

并得到次序（无法计时）。问至少要比
赛多少次才能确定跑得最快、次快和第
三快的三匹马，并证明其最优性。

提示
类比于寻找最大值、最小值、第二大值

信息单元

kth Largest Element in Two Arrays
Given two sorted arrays with n and m

elements respectively, design an algorithm
to find the kth largest element in the totally
(m+n) elements in O (logm + logn) and
explain the time complexity.

最小未出现自然数
 n个大小各不相同的自然数，找出不在这
个自然数序列中出现的最小自然数。
“1、2、4、5”中最小未出现是3。

分别就下面两种情况设计算法
若n个元素是已排序的

若n个元素是未排序的

Finding the “Heavy” Element

 Find the element i with freq(i) > n/2 in an
array of n elements. Here, freq(i) is defined
as the number of occurrence of i in the array.

	计算机问题求解 – 论题2-7
	问题1：Quicksort
	Ordering the Elements with 3 Colors
	Matching Bolts and Nuts
	问题1：Quicksort (续)
	问题1：Quicksort (续)
	问题2：Sorting in linear time
	问题2：Sorting in linear time
	问题2：Sorting in linear time
	问题2：Sorting in linear time (续)
	问题3：selection problem
	问题3：selection problem
	Finding the Second-Largest Key
	Second Largest Key by Tournament
	Analysis of Finding the Second
	Lower Bound by Adversary
	Weighted Key
	Lower Bound by Adversary: Details
	Tracking the Losers to MAX
	Adversary Argument
	First Glance…
	Adversary Strategy
	Daemon Algorithm: Peek
	Lower Bound by Adversary Strategy
	Possible Solution
	问题3：selection problem (续)
	问题3：selection problem (续)
	Weighted Median
	赛马问题
	kth Largest Element in Two Arrays
	最小未出现自然数
	Finding the “Heavy” Element

