Hashtable

n]@l1. dictionary

« 14 sE:dictionary?
o DRUR] B AR B PR PR AR SR 2

e direct-address table
* hash table

many algorithms need only the
ability to insert elements into,
delete elements from, and test
membership in a set. We call a
dynamic set that supports these
operations a dictionary. (p250, TC)

o VREE T AT EATT B A7 il 2 R AT Gl N /1] B / B g T P 2
=)

PARNY

o L, PREEXT EEEATH) PR sk

NN ~

u
(universe of keys)
ae 6@

Al
\|\\\\

[, 2

v
s R

NN

— /‘—4/ k] T [3 [6]/]

S

——= — [Th] L &7

1) el1: dictionary (£z)

o PREEARIX B 1
Theorem 11.1

In a hash table in which collisions are resolved by chaining, an unsuccessful search
takes average-case time ®(1+a), under the assumption of simple uniform hashing.

Theorem 11.2
In a hash table in which collisions are resolved by chaining, a successful search
takes average-case time ®(1+a), under the assumption of simple uniform hashing.

What does this analysis mean? If the number of hash-table slots is at least pro-
portional to the number of elements in the table, we have n = O(m) and, con-
sequently, « = n/m = O(m)/m = O(1). Thus, searching takes constant time
on average. Since insertion takes O(1) worst-case time and deletion takes O(1)
worst-case time when the lists are doubly linked, we can support all dictionary
operations in O(1) time on average.

T HERA “if 2

0] 2. hash function

o YRUNMATER MR — N EF T hash function ™ G () IxX Lo FE 22

 Satisfies (approximately) the assumption of simple uniform hashing.

* Derives the hash value in a way that we expect to be independent o
f any patterns that might exist in the data.

o YRUN{TERf#Esimple uniform hashing? ‘E XThash table Nt
KNRICHE?

Pl

1] 2: hash function (%£)

o RERfEIX P R hash function | N5 2

w bits

h(k) =k mod m | k |

« [a=az]

n I ro |

———" extruct p bits

e 1IX¥hash functionfE S B R e
simple uniform hashing"$? WIRARE, B4 TF?
 universal hashing: to choose the hash function randomly

in a way that is independent of the keys that are actuall
y going to be

h(k) =|m (kA mod1)]

F] 3
porobability calculations in hashing

o PR R LR AR N ?
* expected number of items per location

n/k
* expected number of empty locations

1

n
k<1——>
« expected number of collisioné
E (collisions) = n — E(occupied locations) n—k+k (1 _ l)n
) k
=n — k + E(empty locations),

* expected time until all locations have at least one item

k
E(X)=) E(X;)
j=1

k

)
:JZ:;k—j+1

b /i4. collision resolution

/R fiFopen addressing | ™5 ? & Hchaining A~
XA RAT A7 B, e R AR A sR

5 ?

VAT N

HASH-INSERT(T, k)

1 1=0
2 repeat
3 =hki)

4 if T[j]==NIL

5 Tlj]=k

6 return j

7 elsel =i +1

8 untili ==m

9 error “hash table overflow™

HASH-SEARCH(T, k)

|
2
3
4
5
6
7
3

i =0
repeat
Jj = hik,i)
if T[] ==
return j
i=i+1

until 7'[j]==NILor i == m
return NIL

7] £i4: collision resolution (£k£)

o — NP hEREL N 12 A WIR LT A7
 The probe sequence is a permutation of <0, 1, ..., m-1>.

* uniform hashing: The probe sequence of each key is equally likely to
be any of the m! permutations of <0, 1, ..., m-1>.

o PRIEMFEIXEEhpREL T 1S 2 ﬂmﬁzﬁ JE BT hER 2 2

« linear probing hk.i)=(h'(k)+i)mod m
e quadratic probing hik.i) = (W' (k) + cyi 4 ¢,i?) mod m
* double hashing hk.i) = (h,(k) + ih,(k)) mod m

o PRIRfgRIX L HAAR R K] 1 g ?

* linear probing: primary clustering
e guadratic probing: secondary clustering

1] /@4 collision resolution (£E)

* R
X

H
zl

fikperfect hashing T '5? ‘& Schaining[f] 7

T B~ R Y I o L

N

At a? B, ER WA Rk 27
T my dy .’?ni

—+> 1|0/|0]10

e m, a, by, °_ % —
—+91618///60?2 50/

/ 0 1 2 3 4 7 8

/ Ms ds "?5i

—+> 1|0|0]70

S my a; by 9 57 o
—>16(23|88) /| /| /| /| / q0|52(220 A LA 137/
Z 0 1 2 3 4 7 8 9 10 11 12 13 14 15

