Hashtable



n]@l1. dictionary
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e direct-address table
* hash table

many algorithms need only the
ability to insert elements into,
delete elements from, and test
membership in a set. We call a
dynamic set that supports these
operations a dictionary. (p250, TC)
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1) el1: dictionary (£z)
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Theorem 11.1

In a hash table in which collisions are resolved by chaining, an unsuccessful search
takes average-case time ®(1+a), under the assumption of simple uniform hashing.

Theorem 11.2
In a hash table in which collisions are resolved by chaining, a successful search
takes average-case time ®(1+a), under the assumption of simple uniform hashing.

What does this analysis mean? If the number of hash-table slots is at least pro-
portional to the number of elements in the table, we have n = O(m) and, con-
sequently, « = n/m = O(m)/m = O(1). Thus, searching takes constant time
on average. Since insertion takes O(1) worst-case time and deletion takes O(1)
worst-case time when the lists are doubly linked, we can support all dictionary
operations in O(1) time on average.
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0] 2. hash function
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 Satisfies (approximately) the assumption of simple uniform hashing.

* Derives the hash value in a way that we expect to be independent o
f any patterns that might exist in the data.
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1] 2: hash function (%£)
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h(k) =k mod m | k |
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 universal hashing: to choose the hash function randomly

in a way that is independent of the keys that are actuall
y going to be

h(k) =|m (kA mod1)]




F] 3
porobability calculations in hashing
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* expected number of items per location

n/k
* expected number of empty locations

1

n
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« expected number of collisioné
E (collisions) = n — E(occupied locations) n—k+k (1 _ l)n
) k
=n — k + E(empty locations),

* expected time until all locations have at least one item

k
E(X)=) E(X;)
j=1

k

)
:JZ:;k—j+1




b /i4. collision resolution
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HASH-INSERT(T, k)

1 1=0
2 repeat
3 =hki)

4 if T[j]==NIL

5 Tlj]=k

6 return j

7 elsel =i +1

8 untili ==m

9 error “hash table overflow™

HASH-SEARCH(T, k)

|
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i =0
repeat
Jj = hik,i)
if T[] ==
return j
i=i+1

until 7'[j]==NILor i == m
return NIL




7] £i4:  collision resolution (£k£)
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 The probe sequence is a permutation of <0, 1, ..., m-1>.

* uniform hashing: The probe sequence of each key is equally likely to
be any of the m! permutations of <0, 1, ..., m-1>.
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« linear probing hk.i)=(h'(k)+i)mod m
e quadratic probing hik.i) = (W' (k) + cyi 4 ¢,i?) mod m
* double hashing hk.i) = (h,(k) + ih,(k)) mod m
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* linear probing: primary clustering
e guadratic probing: secondary clustering




1] /@4 collision resolution (£E)
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