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tis all very well talking about the constructs
that an algorithm may use—that is, the pieces it might be composed of—but we
must say something more about the ways of going about using these pieces to make
a whole.
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As the maximum distance will clearly
occur for two of the vertices (why?), there is no need to look at any points along the
polygon’s edges other than the vertices.
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This example was chosen to further illustrate that recognizing the need for a
traversal, and figuring out what really is to be traversed, is important and can be
of considerable help, but it does not always suffice when it comes to solving tricky
algorithmic problems; some insight and a good deal of knowledge of the relevant
subject matter can do no harm.




‘ Mergesort: Divide-and-Conquer
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Greedy: Minimal Spanning Tree




' Greedy: Simple, but may Faill

,3 ® ®
“ ©
Greedy solution Dwnamic planning solution
Total cost: 15 Total costz 13 (optimal )
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A

L(A) = minimum of: 54 L(C), 14+ L(G), 3+ L(D)

The graph L(D) = minimum of: 7+ L(E),6+ L(G), 11 4 L(C)
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I'he graph

[(A) = minimumof: 5+ L(C), 14+ L(G), 3+ L(D)

L(D) = minimum of: 7+ L(E), 6+ L(G), 11 + L(C)
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Divide-and-Conquer; Greedy; Dynamic
Programming; Using “clever” data structure
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Bin Packing Problem

o Suppose we have an unlimited number of bins
each of capacity one, and n objects with sizes s,
S2, ..., Sn Where 0<s; 1 (s; are rational numbers)

o Optimization problem: Determine the smallest
number of bins into which the objects can be
packets (and find an optimal packing) .

o Bin packing is a NPC problem
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First Fit Decreasing - FFD

= The strategy: packing the largest as possible
= Example: S=(0.8, 0.5,0.4,0.4, 0.3, 0.2,0.2,0.2)
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This is NOT an optimal solution! Aa<T LR 8 : 4R ﬁk
; )
-




Online: 2> 5 [ ¥

GJSILE

wEERHBE “BTHE”
KI#F, wH: {4 Ronline
FIB? T A BN ERAME?




‘Next Fit Algorithm - NF

= The strategy: Put a new item In the last bin if
possible, or use a new bin. Never look back!

= An example: S={0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8}
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