> En2-1

DHZEA4ZEZ:>]1. 2. 8+ 9. 11. 12. 13. 14

4.1. Consider the problem of summing the salaries of employees earning more than their direct
manager, assuming each employee has a single manager. The employees are labeled 1, 2,
etc. Write algorithms that solve the problem for each of the following representations of
the input data:

(a) The input is given by an integer N and a two-dimensional array A, where N 1is the
number of employees, A[/, 1] is the salary of the /th employee and A[l, 2] is the
label of his or her manager.

@) The inputis given by a binary tree constructed as follows: The root of the tree represeﬂ

the first employee. For every node V of the tree representing the /th employee,

m V contains the salary of the /th employee;

m the first offspring of V is a leaf containing the label of the manager of the /th
employee; and

m if there are more than / employees, the second offspring of V is the node that
represents the /7 4 1th employee.

B

o RN (@) ;
< HH) K

Hi2:
o E M i#iget_salary_of(Node root, int i):
« V& second offspring < 22 &4k Proot AR B+ H 28 node

Frff-ffisalary
o E X FKEIMain(Node root)itH 45
* Sum=0

* Node cnode=root;
* While(cnode!=null){
* ms=get_salary_of(root,cnode.first.label);
* If(cnode.salary>ms)sum+=cnode.salary;
<}

. Return sum;

° 4.2.

* (a) Write an algorithm which, given a tree T, calculates the sum of
the depths of all the nodes of T

* (b) Write an algorithm which, given a tree T and a positive integer K,
calculates the number of nodes in T at depth K.

* (c) Write an algorithm which, given a tree T, checks whether it has
any leaf at an even depth.

DFS-Visit(G, u):
Preorder processing of u;
for each v child of u
Processing of edge uv(1);
DFS-Visit(G,v);
Processing of edge uv(2);
Postorder processing of u;

Depth-first search

° 4.2.

* (a) Write an algorithm which, given a tree T, calculates the sum of
the depths of all the nodes of T

* (b) Write an algorithm which, given a tree T and a positive integer K,
calculates the number of nodes in T at depth K.

* (c) Write an algorithm which, given a tree T, checks whether it has
any leaf at an even depth.

DFS-Visit(T, u): (a)
Preorder processing of u; * Input: T-a tree
for each v child of u * Output: the sum of the depths
Processing of edge uv(1); of all nodes of T
DFS-Visit(T,v);
Processing of edge uv(2); sum=0;
Postorder processing of u: DFS-Visit(T, u, d):
sum+=d;
o for each v child of u
d’=d+1;
,,r:_”/ » DFS-Visit(T,v,d’);
Z48) (<)
"‘f/':’E;'/IS'X:;\)". \F |/) E\E@ﬁ :
7N DFS-Visit(T, T.root,0)
(= | \u_: 1 ':i_,\} \k:)

Depth-first search

° 4.2.

* (a) Write an algorithm which, given a tree T, calculates the sum of
the depths of all the nodes of T

* (b) Write an algorithm which, given a tree T and a positive integer K,
calculates the number of nodes in T at depth K.

* (c) Write an algorithm which, given a tree T, checks whether it has
any leaf at an even depth.

DFS-Visit(T, u): (b)

Preorder processing of u; * Input:

for each v child of u T-atree,
Processing of edge uv(1); « k- a positive integer
DFS-Visit(T,v); « Output: the number of nodes
Processing of edge uv(2); in T at depth k.

Postorder processing of u;

DFS-Visit(T, u, d, k):

if(d==k) sum++;

o for each v child of u
"(’6/ / -~ d’=d+1:
‘x‘ P DFS-Visit(T,v,d’,k);
SN D ® N
(X7 e & <« EHE
= G O ® Sum=0;

Depth-first search DFS-Visit(T,T.root,0,k)

° 4.2.

* (a) Write an algorithm which, given a tree T, calculates the sum of

the depths of all the nodes of T

* (b) Write an algorithm which, given a tree T and a positive integer K,
calculates the number of nodes in T at depth K.

* (c) Write an algorithm which, given a tree T, checks whether it has

any leaf at an even depth.

DFS-Visit(T, u):
Preorder processing of u;
for each v child of u

Processing of edge uv(1):

DFS-Visit(T,v):

Processing of edge uv(2);

Postorder processing of u;

Depth-first search

(c)
* |nput:
 T-atree,
e Output:
* True-if T has any leaf at an

even depth
DFS-Visit(T, u, d):
if(d%2==0&&u is a leaf)
return true;
for each v child of u
d’=d+1;
if(DFS-Visit(T,v,d’))
return true;

DFS-Visit(T,root,0,)

4.8. Prove that the maximal distance between any two points on a polygon occurs between
two of the vertices.

° /\‘r$ﬁ.
e Casel: Two point on the same Ime——Easy

* Case2:Two point on different line

 2.1:0ne vertex, one non-vertex

* Itis easy to show that . .
* AB<AC or AB<AD C B D

* In another word, for each two points of case 2.1, we can
always find two vertices with longer distance.
A

* 2.2:two non-vertex
* Itis easy to show that ,
* AB<AC or AB<AD C B D

* ACor AD are of case 2.1, and with the conclusion of case 2.1, we
conclude that- for each two points of case 2.2, we can always find

two vertices with longer distance.
* 2.3:two vertexes
e trivial

49. Write a program implementing the maximal polygonal distance algorithm.

 Specification:

* Input: a simple convex polygon P of n points, with P[i] denotes the i-
th point of P in clockwise order, P[i].x and PJ[i].y denote the
coordinate of the i-th point(i=0,...,n-1)

e Output: a simple integer indicating the maximal Polygoal Distance

of P;
1) Let V[i] be the vector obtained by (P[(i + 1)%n].x — P[i].x, P[(i + 1)%n].y — P[i].y)
2) Let line[i] be the line determined by P[i] and P[(i+1)%n]
3) Let cl « line[0]; cv « V[0]; 3)
4) Find one point p, which has the longest distance to cl; |
5) max < 0; !
6) for(t « 0;t<n;t++){
6.1) tdis « max(dis(P[p], P[cl.v1]),dis(P[p], P[cl.v2]))
6.2) if(tdis>max) max «tdis;
6.3) angl <angle between cv and V[cl.v2];
6.4) ang2 <angle between —cv and V[p];
6.5) if(angl<ang2){
6.5.1) cl « line[cl.v2]; cv « V[cl.v2]; p « P[(p + 1)%n];
6.5.2) lelsef
6.5.3) cl « line[p]; cv « V[p]; p « P[(cl.v2)%n]
6.5.4) }
6.6) }

7) return max;

4.11. Wnrite algorithms that find the two maximal elements in a given vector of N distinct
integers (assume N > 1).

(a) Using an iterative method.
(b) Using the divide-and-conquer method.

(a)
B,
m=find_max(V);
sm=find_max(V-max);
JH2.
m=max(V[1],V[2]);
sm=min(V[1],V[2]);
for(i=3;i<=n;i++){
if(V[i]>m){
sm=m;
m=VI[i];
lelse if(V[i]>sm) sm=V[i];

4.12. Write in detail the greedy algorithm described in the text
for finding a minimal spanning tree.

* Prim
® %ZIK‘EL;EI\ZkE

« MIRTRES:
o Vysr: CHANAMSTII T i, HILE N0
* VNon-mst: MARBEIAMSTIIN £, WG AFTA T A

« BEHLMVNon—mst TIEHBOFMIER — A VA Vs

* While(VNon—mst # @) do
o REUBUE I /NI uz € {ab|ab € E,a € Vygr, b € VNon—msT}
* VNon—MST < VNon—MST - b;
* Vusr < Vusr + b;
e MST <« MST + ab

e Kruskal ?

capacity with some elements of a given set of available items of various types in the most profitable way. The input to
the problem consists of:

M C the total weight capacity of the knapsack;

B - positive integer N, the number of item types;

B : vector Q, where Q[/] is the available number of items of type /;

M : vector W, where W[/] is the weight of each item of type /, satisfying 0 < W[/] £ C;and

B : vector P, where P[/] is the profit gained by storing an item of type / in the knapsack.

All input values are non-negative integers. The problem is to fill the knapsack with elements whose total weight does
not exceed C, such that the total profit of the knapsack is

maximal. The output is a vector F, where F[/] contains the number of items of type /

that are put into the knapsack.

4.13. (a) Design a dynamic planning algorithm for the integer-knapsack problem.
(b) What is your algorithm’s output for the input

. N—5 STl IkI=4 3 Bk (Ot A8t profi
S E =1k SHIK] = _ max (ST = 1]k — j = wlil] +j = plil}
" 0 =[3145]1] o

= W = [10,20,20,8.7]

m P =[17,42,35,16,15]

and what 1s the total profit of the knapsack?

4.14. (a) Design a greedy algorithm for the knapsack problem.
(b) What is your algorithm’s output for the input given in Exercise 4.13(b), and what is
the total profit of the knapsack now?

The knapsack problem is a variation of the integer-knapsack problem, in which instead of
discrete items, there are materials. The difference is that instead of working with integer
numbers, we may put into the knapsack any quantity of material / which does not
exceed the available quantity Q[/]. The vectors W and P now contain the weight and
profit, respectively, of one quantity unit of material /. All input and output values are
now non-negative real numbers, not necessarily integers.

Profits=0;

for(i=0;i<n;i++) {
uplil.unitprofit=p[il/wl[il;//t & AL = KA
up[i].index=l;

}

reorder up[] decreasingly with respects to up[i].unitprofit

for(t=0;t<n;t++) do
K=min(C, wlup]t].index]*qg[up][t].index]);
profits+=K*up[t].unitprofit;
C-=K;

return profits;

