反馈与讨论

2014／12／10

12.2

- A. Find the radius and diameter of Cn for $\mathrm{n}>=3$.
- B. Find the radius and diameter of Pn for $\mathrm{n}>=3$. What is the center of Pn ?
- C. Find the radius and diameter of Qn for $n>=2$.

12.4

- Find the radius and diameter of the Petersen graph PG. What is the center of PG?

12.6

- Prove that if G is a disconnected graph, then $\operatorname{diam}\left(G^{\prime}\right)<=2$.

12.10

- A. Prove theorem 12.3: Let u and v be adjacent vertices in a connected graph G. Then $|d(u, x)-d(v, x)|<=1$ for every vertex x of G.
- B. Let G be a connected graph and suppose that $d(u, x)=k$ for some u, x $\in V(G)$. Show that if v is a neighbor of u, then $\mathrm{d}(\mathrm{v}, \mathrm{x})$ is $\mathrm{k}-1, \mathrm{k}$, or $\mathrm{k}+1$.

12.16-12.18

- What is the periphery of P_{n} for $n>=2$?
- What is the periphery of the Petersen graph?

12.20

- Give an example of a connected graph whose center and periphery are distinct but not disjoint or explain why no such examples exist.

12.26

- For the graph G of Figure 12.14, determine
- (a) the set of peripheral vertices of G,
- (b) the set of eccentric vertices of G,
- (c) the set of boundary vertices of G,
- (d) the periphery, eccentric subgraph and boundary of G.

