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26.1-6

Professor Adam has two children who, unfortunately, dislike each other. The prob-
lem 1s so severe that not only do they refuse to walk to school together, but in fact
each one refuses to walk on any block that the other child has stepped on that day.
The children have no problem with their paths crossing at a corner. Fortunately
both the professor’s house and the school are on corners, but beyond that he 1s not
sure if it is going to be possible to send both of his children to the same school.
The professor has a map of his town. Show how to formulate the problem of de-
termining whether both his children can go to the same school as a maximum-flow
problem.

Create a vertex for each corner. and if there 1s a street between corners u and v,
create directed edges (i, v) and (v, /). Set the capacity of each edge to 1. Let the
source be corner on which the professor’s house sits, and let the sink be the corner
on which the school is located. We wish to find a flow of value 2 that also has the
property that f(u, v) is an integer for all vertices i and v. Such a flow represents
two edge-disjoint paths from the house to the school.



26.2-2
In Figure 26.1(b), what is the flow across the cut ({s, v, va},{vi,v3,1})? What is
the capacity of this cut?



26.2-8
Suppose that we redefine the residual network to disallow edges into s. Argue that
the procedure FORD-FULKERSON still correctly computes a maximum flow.



26.2-10

Show how to find a maximum flow in a network G = (V, E) by a sequence of at

most |E | augmenting paths. (Hint: Determine the paths after finding the maximum
flow.)



26.2-12

Suppose that you are given a flow network G, and G has edges entering the
source 5. Let f be a flow in G in which one of the edges (v, s) entering the source
has f(v,s) = 1. Prove that there must exist another flow f’ with f'(v,s5) = 0
such that | f| = | f’]. Give an O(E)-time algorithm to compute /', given f, and
assuming that all edge capacities are integers.



26.2-13

Suppose that you wish to find, among all minimum cuts in a flow network G with
integral capacities, one that contains the smallest number of edges. Show how to
modify the capacities of G to create a new flow network G’ in which any minimum
cut in G’ is a minimum cut with the smallest number of edges in G.



26.3-3

Let G = (V, E) be a bipartite graph with vertex partition V' = L U R, and let G’
be its corresponding flow network. Give a good upper bound on the length of any
augmenting path found in G" during the execution of FORD-FULKERSON.

By definition, an augmenting path is a simple path s ~+ ¢ in the residual net-
work G}. Since G has no edges between vertices in L and no edges between
vertices in R, neither does the flow network G" and hence neither does G}.. Also,
the only edges involving s or ¢ connect s to L and R to ¢. Note that although edges
in G can go only from L to R, edges in G, can also go from R to L.

Thus any augmenting path must go
sl —->R—>...- L —->R-—>1.

crossing back and forth between L and R at most as many times as it can do
so without using a vertex twice. It contains s, ¢, and equal numbers of dis-
tinct vertices from L and R—at most 2 + 2 - min(|L| . |R|) vertices in all. The

length of an augmenting path (i.e., its number of edges) is thus bounded above by
2-min(|L|,|R]) + 1.



26-1 Escape problem
An nxn grid is an undirected graph consisting of n rows and n columns of vertices,
as shown in Figure 26.11. We denote the vertex in the ith row and the jth column
by (i, j). All vertices in a grid have exactly four neighbors, except for the boundary
vertices, which are the points (i, j) for whichi = 1,i =n, j = 1,0r j = n.
Given m < n? starting points (xq, y1), (x2. ¥2),....(Xm, ym) in the grid, the
escape problem is to determine whether or not there are m vertex-disjoint paths
from the starting points to any m different points on the boundary. For example,
the grid in Figure 26.11(a) has an escape, but the grid in Figure 26.11(b) does not.

a. Consider a flow network in which vertices, as well as edges, have capacities.
That is, the total positive flow entering any given vertex is subject to a capacity
constraint. Show that determining the maximum flow in a network with edge
and vertex capacities can be reduced to an ordinary maximum-flow problem on
a flow network of comparable size.
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Figure 26.11 Gnds for the escape problem. Starting points are black, and other gnd vertices are
white. (a) A grnid with an escape, shown by shaded paths. (b) A grid with no escape.

b. Describe an efficient algorithm to solve the escape problem, and analyze its
running time.



26-2 Minimum path cover

A path cover of a directed graph G = (V, E) is a set P of vertex-disjoint paths
such that every vertex in V is included in exactly one path in P. Paths may start
and end anywhere, and they may be of any length, including 0. A minimum path
cover of G 1s a path cover containing the fewest possible paths.

a. Give an efficient algorithm to find a minimum path cover of a directed acyclic
graph G = (V, E). (Hint: Assuming that V = {1,2,...,n}, construct the
graph G' = (V', E'), where

Vi = {xe. X1 X Udyos Yiso- o5 V)
E' = {(x0,xi):i € V}U{(yi,yo):i € V}U{(x;,y;):(i,j) € E},

and run a maximum-flow algorithm.)

b. Does your algorithm work for directed graphs that contain cycles? Explain.
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