7 A d g — 213
- Ak

201905 H20H

Part |
Greedy Strategy

1] et ;

VRIG AT 48 “ Optimal
Substructure”'4? RGE &5 H-
e WY I o W R it o

optimal substructure:
optimal solutions to a problem incorporate optimal solutions
to related subproblems, which we may solve independently.

— "[a)f" eI AEREFFSinstancefYES, (F—FInJRREI—FEE,

IRRESHERE . NMTAREERFRIAES "RIFEE" |
M "EKEER WiREXER? 55 KEN?

—

Activity Selection Problem

Suppose we have a set 5 = {a,,a,,...,a,}
of n proposed activities that wish to use a resource, such as a lecture hall, which
can serve only one activity at a time. Each activity a; has a start time s; and a finish
time f;, where 0 < s; < f; < o00. If selected, activity a; takes place during the
half-open time interval [s;, f;). Activities @; and a; are compatible if the intervals
[s;, f;) and [s;, f;) do not overlap. That is, a; and a; are compatible if 5; > f;
or 5; > f;. Inthe activity-selection problem, we wish to select a maximum-size
subset of mutually compatible activities.

78 [0\ 10 fi)

6
S 6 8 |8 2 (12
9 10 11 \1Z 14 |\l

ANERBN: - /1\

Si |
fi [\4

N Lol o
o L W
C=a wn
O

o] 2.
Activity Selection|n i £ & H
A “mINTFEH” , jjﬁ/ ?

Sik o Syi
f. A S. t

VooV J

Sij BAAFEEANA,
A,‘k = A,‘j N S,‘k Akj — Ar'j ﬂSkj ¢ A;‘j — Ar’k U {ﬂk} U Akj

B BARRNE, ASABYIENFIRRAISRIE

S AN U [B) AN LT iE Bhay (1 45 RIS], 1
25 RN 18] 5T RO 45 TR 8] B T B T S AR
[t we denote the size of
an optimal solution for the set S;; by c[i, j], then we would have the recurrence

cli,j] =cli,k] +clk,j] + 1.

[T R R R L AR R,
S, PP 2 M e O B 5

cli,jl= ngx {cli,k] +clk,jl+ 1} ifS; #0
Ak Ejj

ESHRIREE
fE BRILIAE Ak, a T LURS, A —EE, ik

R € Hay, W E R € 17 e ZhASRI T VA2 10 &k
I BT AT 15 T

7] 3

=5 A W e AT
A B 17 R ?

] 54
FiiE “GREEDY” R¥8H4? #REE
EHESGRHIESMRAX—HE?

Greedy by intuition:

Intuition suggests that we should choose an activity that leaves the
resource available for as many other activities as possible. Now, of the
activities we end up choosing, one of them must be the first one to
finish. Our intuition tells us, therefore, to choose the activity in S with
the earliest finish time, since that would leave the resource available
for as many of the activities that follow it as possible.

Activity Selection: the Idea

B E RTINS = {0, €55 >)R, SERLG
o) /R 2 R B iE s &S, WR TG R @8N
S,;

B Greedy /7 4:

— R PSS R [A) B PTG B, b g
— IR LS

Greedy] MBS “f” , (HAK “&”
A LTS 21 IR A I ﬁﬁ’] “B” HAK v

EX% E/ﬁ 2 Fk
£) & 3

fi: e S

HARBENSIEE

Consider any nonempty subproblem Sk, and let a,, be an activity in S¢ with the
earliest finish time. Then a,, 1s ncluded in some maximum-size subset of mutually
compatible activities of S.

l‘tﬂ 5,

|

J
J

JLA

b

ifﬁé%%?

Proof Let A; be a maximum-size subset of mutually compatible activities in Sk,
and let a; be the activity in A; with the earliest finish time. If a; = a,,, we are
done, since we have shown that a,, 1s in some maximum-size subset of mutually
compatible activities of Sk. If a; # am, letthe set A, = Ax —{a;} U {am} be Ai
but substituting a,, for a;. The activities in A; are disjoint, which follows because
the activities in Ay are disjoint, a; is the first activity in Ay to finish, and f,, < f;.
Since |A}| = |Ag|, we conclude that A) is a maximum-size subset of mutually
compatible activities of Sk, and it includes a,,. O

1] F56 -
ik B B A V8 25 35K/ R T 2

ME— N RINEFEERAR,, BT LLLEE S,
(1) BERMAEPE R ERENES K, F*=5E
FER, EHa 2SR aREN;
(2) FTAURREE IR/,

AEERBETR (F) [[&ES,

RECURSIVE-ACTIVITY-SELECTOR (s, f,k,n)
| m=k+1

2 whilem < nand s[m] < f[k] // find the first activity in Sy to finish
3 m=m+ 1 TTAE: P RAE S E 3 5 A B T HE A

4 iftm<n

5 return {a,,} U RECURSIVE-ACTIVITY-SELECTOR (s, f,m,n)

6

else return ¢ 1 AL AR X AT) AL R A 275 2

NI aRIR) R

RECURSIVE-ACTIVITY-SELECTOR (s, f,0,n)

The procedure RECURSIVE-ACTIVITY-SELECTOR 1s
almost “tail recursive” : 1t ends with a recursive call to itself
followed by a union operation. It 1s usually a straightforward
task to transform a tail-recursive procedure to an iterative
form; 1n fact, some compilers for certain programming
languages perform this task automatically.

\M)
DA |
— (] o]

i@iﬁF

T

GREEDY-ACTIVITY-SELECTOR (s, f)
1 n = s.length

2 A={aj

3 k=1

4 form = 2ton Iﬁiﬂ]mg

5 if k

o ey AHARR
L i

8 return A

)%l/ R e iEm ?

a] 10

1R1R/\ﬁ “ K/fj[‘i% l:l* 7 ﬁl%{%
WE RO EVER BRI ? 8T
- S A 7

How can we tell whether a greedy algorithm will solve a particular
optimization problem? No way works all the time, but the greedy-
choice property and optimal substructure are the two key
ingredients. If we can demonstrate that the problem has these properties,
then we are well on the way to developing a greedy algorithm for it.

ﬁ"t’r‘l

:lll

e ———— T —— —

The first key ingredient 1s the greedy-choice property: we can assemble a globally
optimal solution by making locally optimal (greedy) choices. In other words, when
we are considering which choice to make, we make the choice that looks best in
the current problem, without considering results from subproblems.

5] 11 .
IREEFHESHIES
R IX AN 1 R A g 2

7] 12

A2 BA LTS3 TXK
HGREEDY /7 ¥ it il AR B %2 ?

ranfErrmiopl+: Optimal substructure tells us that if a,
15 1n the optimal solution, then an optimal solution to the original problem consists
of activity @, and all the activities in an optimal solution o the subproblem §,.

Greedy vs. Dynamic Programming
W A PO EIRIRA R, RE “77 T
B AREHTULENEIRE T, RS 1!

20
) 30 $80
item 3 301 $120
' +
item 2 50 N 30] $120
) 201 $100 201 $100
item 1 30 i + +
(o 20 20 $S100
‘ 10] 10] $60 10 $60 10] $60
52 J —_—
$60 $S100 $120 knapsack = $220 =$160 =$180 = $240
(a) (b) (c)
® H
@ FEE1 3 :

R 15 94 4 fractional knapsack 17, 0-1EL AT ?

Part |}
HuffmanZq 4

RS S fRha

Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 O11 100 101
Variable-length codeword 0 101 100 111 1101 1100

T 0) 100

55
0 |
14 (25 30
f SN

S5 c12 a:16] [e9 c12| [b:13] (14
(M

IR FCRE B 103 547 B SCAS 2 - £:5] [e9

HEK30N; M CGRIPE)D A&K22.475101

]
'_

W

14
2 78 7l 8%
(?

VA1 N

2 a4

QRREQTLXEFETXKEHE’J
ﬁE'f—i N ALk {5 A 5 BRAT

7] 1 5:
MH%XL/HE”IE%,[_I_/Z\ %ﬂ‘:lﬂj‘?

B(T)= Z(‘.freq -dr(c)

ceC

(b)

(c)

Huffman Code

[£:5

e.9Jcl2 b:13] [d:16] [a:45

rc:12

b3 316 [a:45
o/ \1

d:16] a:45s
0 | 0 |

e:9 c:12| |b:13

g = |

——

HUFFMAN(C)

| n=|C|

2 D= G Q A — A/ IMELEIAT
3 fori =1ton—1

4 allocate a new node z

5 z.left = x = EXTRACT-MIN(Q)

6 z.right = y = EXTRACT-MIN(Q)

7 z.freq = Xx.freq + y.freq

8 INSERT(Q,)

9 return EXTRACT-MIN(Q) // return the root of the tree

To analyze the running time of Huffman’s algorithm, we assume that Q is im-
plemented as a binary min-heap (see Chapter 6). For a set C of n characters, we
can initialize Q in line 2 in O(n) time using the BUILD-MIN-HEAP procedure dis-
cussed in Section 6.3. The for loop in lines 3-8 executes exactly n — 1 times, and
since each heap operation requires time OQ(lg n), the loop contributes O(nlgn) to
the running time. Thus, the total running time of HUFFMAN on a set of n charac-
ters is O(nlgn).

e

i 1 B

7O BT 45 1%) R 2
greecly-cholice Propertys
X — R B T R 3R 2

Let C be an alphabet in which each character ¢ € C has frequency c¢.freg. Let
x and y be two characters in C having the lowest frequencies. Then there exists

an optimal prefix code for C in which the codewords for x and y have the same
length and differ only in the last bit

T TI T//
X a | a
. i
y y b
a b X b X y
B(T)— B(T")
= Z c.freq -dr(c)— Z c.freq - dr/(c)
ceC ceC

= X.freq-dr(x)+ a.freq-dr(a) — x.freq-dr(x)— a.freq - dr:(a)
= X.freq-dr(x)+ a.freq-dr(a) — x.freq-dr(a) —a.freq - dr(x)
= (a.freq — x.freq)(dr(a) — dr(x))
> 0,
Exchanging y and b does not increase the cost, and so B(T") — B(T") is nonnega-
tive. Therefore, B(T") < B(T'), and since T is optimal, we have B(T') < B(T").
which implies B(T") = B(T). Thus, T" is an optimal tree .

I

’%X

Léwl i &5 /2 optimal-
substructure [Ef[ﬁiﬁyg

MR ?

Let C be a given alphabet with frequency c.freq defined for each character ¢ € C.
[et x and y be two characters n C with minimum frequency. Let C’ be the
alphabet C with the characters x and y removed and a new character z added,
o that C' = C — {x,y} U {z}. Define f for C' as for C, except that
z.freq = x.freq + y.freq. Let T' be any tree representing an optimal prefix code
for the alphabet C’. Then the tree T, obtained from T by replacing the leaf node
for z with an intenal node having x and y as children, represents an optimal prefix
code for the alphabet C.

e For each character ¢ € C — {x, y}, we have that dr(c) = dp/(c), and hence
IR . , , , , | |
c.freq - dr(c) = c.freq - dr:(c). Since dr(x) = dr(y) = dr/(z) + 1, we have
x.freq-dr(x) + y.freq-dr(y) = (x.freq+y.freq)(dr(z) +1)
= Z.freq -dp/(2) + (x.freq + y.freq) ,

B1. B(T) = B(T') + x.freq + y.freq
We now prove the lemma by contradiction. Suppose that T does not repre-

sent an optimal prefix code for C. Then there exists an optimal tree 7" such that
B(T") < B(T). Without loss of generality (by Lemma 16.2), T” has x and y as
siblings. Let 7" be the tree 7" with the common parent of x and y replaced by a
leaf z with frequency z.freq = x.freq + y.freq. Then
B(T") = B(T")—x.freq— y.freq

< B(T)—x.freq— y.freq

= B(T").
yielding a contradiction to the assumption that 7’ represents an optimal prefix code
for C'. Thus, T" must represent an optimal prefix code for the alphabet C. o

BTC pp.422-:
BTC pp.427-:
BTC pp.436-:
BTC pp.446-:

CX.
CX.
CX.

pro

16.1-2, |
16.2-1, |
16.3-2,

RIMEAK

16.1-3
16.2-2

b.16-1

16.3-5, 16.3-8

