1-9 Set Theory (II): Relations

魏恒峰

hfwei@nju.edu.cn

2019 年 12 月 03 日
Set Theory

A Branch of Mathematics

N, R

\omega

\mathbb{N}_0

Foundation of Mathematics

(+ Logic)

(a, b)

\{\}

f : A \rightarrow B

A \times B

R \subseteq A \times B

Hengfeng Wei (hfwei@nju.edu.cn)

1-9 Set Theory (II): Relations

2019 年 12 月 03 日
Figure 13. A selection of consistency axioms over an execution \((E, \text{repl}, \text{obj}, \text{oper}, \text{rval}, \text{ro}, \text{vis}, \text{ar})\).

Auxiliary relations

\[\text{sameobj}(e, f) \iff \text{obj}(e) = \text{obj}(f)\]

Per-object causality (aka happens-before) order:

\[\text{hbo} = ((\text{ro} \cap \text{sameobj}) \cap \text{vis})^+\]

Causality (aka happens-before) order: \(\text{hb} = (\text{ro} \cup \text{vis})^+\)

Axioms

EVENTUAL:

\[\forall e \in E. \neg(\exists \text{ infinitely many } f \in E. \text{sameobj}(e, f) \land \neg(e \rightsquigarrow f))\]

THINAIR: \(\text{ro} \cup \text{vis} \text{ is acyclic}\)

POCV (Per-Object Causal Visibility): \(\text{hbo} \subseteq \text{vis}\)

POCA (Per-Object Causal Arbitration): \(\text{hbo} \subseteq \text{ar}\)

COCV (Cross-Object Causal Visibility): \((\text{hb} \cap \text{sameobj}) \subseteq \text{vis}\)

COCA (Cross-Object Causal Arbitration): \(\text{hb} \cup \text{ar} \text{ is acyclic}\)

Assume \((v, w) \in [E, V, \text{rval}, \text{ro}, \text{vis}, \text{ar})\).

\[\text{sameobj}(e, f) \iff \text{obj}(e) = \text{obj}(f)\]

By agree we have \(\text{ro} \cup \text{vis} \subseteq \text{Ex}.\) Then

\[\{\forall (a, v', (a', v') \in V. (a = a' \iff v = v') \land \neg(\exists \text{ infinitely many } f \in E. \text{sameobj}(a, f) \land \neg(a \rightsquigarrow f))\}, \text{Ex}\}

\[\{\forall (a, v', (a', v') \in V. (a = a' \iff v = v') \land \neg(\exists \text{ infinitely many } f \in E. \text{sameobj}(a, f) \land \neg(a \rightsquigarrow f))\}, \text{Ex}\}

\[\{\forall (a, v', (a', v') \in V. (a = a' \iff v = v') \land \neg(\exists \text{ infinitely many } f \in E. \text{sameobj}(a, f) \land \neg(a \rightsquigarrow f))\}, \text{Ex}\}

\[\{\forall (a, v', (a', v') \in V. (a = a' \iff v = v') \land \neg(\exists \text{ infinitely many } f \in E. \text{sameobj}(a, f) \land \neg(a \rightsquigarrow f))\}, \text{Ex}\}

\[\{\forall (a, v', (a', v') \in V. (a = a' \iff v = v') \land \neg(\exists \text{ infinitely many } f \in E. \text{sameobj}(a, f) \land \neg(a \rightsquigarrow f))\}, \text{Ex}\}

\[\{\forall (a, v', (a', v') \in V. (a = a' \iff v = v') \land \neg(\exists \text{ infinitely many } f \in E. \text{sameobj}(a, f) \land \neg(a \rightsquigarrow f))\}, \text{Ex}\}

\[\{\forall (a, v', (a', v') \in V. (a = a' \iff v = v') \land \neg(\exists \text{ infinitely many } f \in E. \text{sameobj}(a, f) \land \neg(a \rightsquigarrow f))\}, \text{Ex}\}

\[\{\forall (a, v', (a', v') \in V. (a = a' \iff v = v') \land \neg(\exists \text{ infinitely many } f \in E. \text{sameobj}(a, f) \land \neg(a \rightsquigarrow f))\}, \text{Ex}\}

\[\{\forall (a, v', (a', v') \in V. (a = a' \iff v = v') \land \neg(\exists \text{ infinitely many } f \in E. \text{sameobj}(a, f) \land \neg(a \rightsquigarrow f))\}, \text{Ex}\} \]
Figure 13. A selection of consistency axioms over an execution $(E, \text{repl. obj, oper, rval, ro, vis, ar})$

Auxiliary relations

- **sameobj(e, f) \iff obj(e) = obj(f)**
- **Per-object causality (aka happens-before) order:**

 $\text{hbo} = (\text{ro} \cap \text{sameobj}) \cup \text{vis}^{+}$

- **Causality (aka happens-before) order:**

 $\text{hb} = (\text{ro} \cup \text{vis})^{+}$

Axioms

Eventual:

$\forall e \in E. \neg(\exists \text{ infinitely many } f \in E. \text{sameobj}(e, f) \land \neg(e \mathbin{\xrightarrow{\text{vis}}} f))$

Thinair:

$\text{ro} \cup \text{vis}$ is acyclic

POCV (Per-Object Causal Visibility):

$hbo \subseteq \text{vis}$

POCA (Per-Object Causal Arbitration):

$hbo \subseteq \text{ar}$

COCV (Cross-Object Causal Visibility):

$(hbo \cap \text{sameobj}) \subseteq \text{vis}$

COCA (Cross-Object Causal Arbitration):

$hbo \cup \text{ar}$ is acyclic

Assume $(e, V) \in [E \times V] [\text{vis}]$, and

$f = (E', \text{repl. obj, oper, rval, ro, vis, ar})$.

thus

$\forall e \in E'. \text{sameobj}(e', f) \land \neg(e' \mathbin{\xrightarrow{\text{vis}}} f)$
DON'T BE SCARED

AN ANTHOLOGY FOR CHILDREN BY WELL-LOVED AUTHORS & ARTISTS
I’m so excited.
Definition (Relations)

A *relation* R from A to B is a subset of $A \times B$:

$$R \subseteq A \times B$$
Definition (Relations)

A relation R from A to B is a subset of $A \times B$:

$$R \subseteq A \times B$$

Definition (Cartesian Products)

The *Cartesian product* $A \times B$ of A and B is defined as

$$A \times B \triangleq \{(a, b) \mid a \in A \land b \in B\}$$
Definition (Relations)

A *relation* \(R \) from \(A \) to \(B \) is a subset of \(A \times B \):

\[R \subseteq A \times B \]

Definition (Cartesian Products)

The *Cartesian product* \(A \times B \) of \(A \) and \(B \) is defined as

\[A \times B \triangleq \{(a, b) \mid a \in A \land b \in B\} \]

Axiom (Ordered Pairs)

\((a, b) = (c, d) \iff a = c \land b = d \)
Definition (Relations)
A relation R from A to B is a subset of $A \times B$:

$$R \subseteq A \times B$$

Definition (Cartesian Products)
The Cartesian product $A \times B$ of A and B is defined as

$$A \times B \triangleq \{(a, b) \mid a \in A \land b \in B\}$$

Axiom (Ordered Pairs)

$$(a, b) = (c, d) \iff a = c \land b = d$$

Q: Are you satisfied with the definitions above?
Axiom (Ordered Pairs)

\((a, b) = (c, d) \iff a = c \land b = d\)
Axiom (Ordered Pairs)

\[(a, b) = (c, d) \iff a = c \land b = d\]

Definition (Ordered Pairs (Kazimierz Kuratowski; 1921))

\[(a, b) \triangleq \{\{a\}, \{a, b\}\}\]
Definition (Ordered Pairs (Kazimierz Kuratowski; 1921))

\[(a, b) \triangleq \{\{a\}, \{a, b\}\}\]
Definition (Ordered Pairs (Kazimierz Kuratowski; 1921))

\[(a, b) \triangleq \{\{a\}, \{a, b\}\}\]

Theorem

\[(a, b) = (c, d) \iff a = c \wedge b = d\]
Definition (Ordered Pairs (Kazimierz Kuratowski; 1921))

\[(a, b) \triangleq \{\{a\}, \{a, b\}\}\]

Theorem

\[(a, b) = (c, d) \iff a = c \land b = d\]

Proof.

\[\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}\]
Definition (Ordered Pairs (Kazimierz Kuratowski; 1921))

\[(a, b) \triangleq \{\{a\}, \{a, b\}\}\]

Theorem

\[(a, b) = (c, d) \iff a = c \land b = d\]

Proof.

\[
\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}
\]

\textbf{CASE I} : \(a = b\)

\textbf{CASE II} : \(a \neq b\)
Definition (Ordered Pairs (Norbert Wiener; 1914))

\[(a, b) \triangleq \{\{a\}, \emptyset, \{\{b\}\}\}\]
Definition (Ordered Pairs (Norbert Wiener; 1914))

\[(a, b) \triangleq \left\{ \{\{a\}, \emptyset\}, \{\{b\}\} \right\}\]

Theorem

\[(a, b) = (c, d) \iff a = c \land b = d\]
Definition (Cartesian Products)

The *Cartesian product* $A \times B$ of A and B is defined as

$$A \times B \triangleq \{(a, b) \mid a \in A \land b \in B\}$$
Definition (Cartesian Products)

The *Cartesian product* $A \times B$ of A and B is defined as

$$A \times B \triangleq \{(a, b) \mid a \in A \land b \in B\}$$

$$X^2 \triangleq X \times X$$
Definition (Cartesian Products)

The *Cartesian product* $A \times B$ of A and B is defined as

$$A \times B \triangleq \{(a, b) \mid a \in A \land b \in B\}$$

\[X^2 \triangleq X \times X \]

Theorem

$A \times B$ is a set.
Definition (Cartesian Products)

The *Cartesian product* $A \times B$ of A and B is defined as

$$A \times B \triangleq \{ (a, b) \mid a \in A \land b \in B \}$$

$$X^2 \triangleq X \times X$$

Theorem

$A \times B$ is a set.

Proof.

$$A \times B \triangleq \{ (a, b) \in \mathcal{P} \mid a \in A \land b \in B \}$$
Definition (Cartesian Products)

The *Cartesian product* $A \times B$ of A and B is defined as

$$A \times B \triangleq \{(a, b) \mid a \in A \land b \in B\}$$

$$X^2 \triangleq X \times X$$

Theorem

$A \times B$ is a set.

Proof.

$$A \times B \triangleq \{(a, b) \in ? \mid a \in A \land b \in B\}$$

$$\{\{a\}, \{a, b\}\} \in ?$$
Definition (Cartesian Products)

The *Cartesian product* $A \times B$ of A and B is defined as

$$A \times B \triangleq \{(a, b) \mid a \in A \land b \in B\}$$

$$X^2 \triangleq X \times X$$

Theorem

$A \times B$ is a set.

Proof.

$$A \times B \triangleq \{(a, b) \in \? \mid a \in A \land b \in B\}$$

$$\\{\{a\}, \{a, b\}\} \in \mathcal{P}(\mathcal{P}(A \cup B))$$
Definition (Relations)

A relation R from A to B is a subset of $A \times B$:

$$R \subseteq A \times B$$
Definition (Relations)

A relation R from A to B is a subset of $A \times B$:

$$R \subseteq A \times B$$

If $A = B$, R is called a relation on A.
Definition (Relations)

A relation R from A to B is a subset of $A \times B$:

$$R \subseteq A \times B$$

If $A = B$, R is called a relation on A.

Definition (Notations)

$$(a, b) \in R \quad R(a, b) \quad aRb$$
Definition (Relations)

A relation R from A to B is a subset of $A \times B$:

$$R \subseteq A \times B$$

Examples
Definition (Relations)

A *relation* R from A to B is a subset of $A \times B$:

$$R \subseteq A \times B$$

Examples

- Both $A \times B$ and \emptyset are relations from A to B.
Definition (Relations)

A relation R from A to B is a subset of $A \times B$:

$$R \subseteq A \times B$$

Examples

- Both $A \times B$ and \emptyset are relations from A to B.

- $< = \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid a \text{ is less than } b\}$
Definition (Relations)

A \textit{relation} R from A to B is a subset of $A \times B$:

$$R \subseteq A \times B$$

Examples

\begin{itemize}
 \item Both $A \times B$ and \emptyset are relations from A to B.
 \item $< = \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid a \text{ is less than } b\}$
 \item $D = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid \exists q \in \mathbb{N} : a \cdot q = b\}$
\end{itemize}
Definition (Relations)

A relation R from A to B is a subset of $A \times B$:

$$R \subseteq A \times B$$

Examples

▸ Both $A \times B$ and \emptyset are relations from A to B.

▸

$$< = \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid a \text{ is less than } b\}$$

▸

$$D = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid \exists q \in \mathbb{N} : a \cdot q = b\}$$

▸ P : the set of people

$$M = \{(a, b) \in P \times P \mid a \text{ is the mother of } b\}$$

$$B = \{(a, b) \in P \times P \mid a \text{ is the brother of } b\}$$
Important Relations:

Equivalence Relations (1-9)

Functions (1-10)

Ordering Relations (1-12)
Before that,

3 Definitions

5 Operations

7 Properties

\[R = \{(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 3)\} \]
3 Definitions
Definition (Domain)

\[\text{dom}(R) = \{ a \mid \exists b : (a, b) \in R \} \]
Definition (Domain)

\[\text{dom}(R) = \{ a \mid \exists b : (a, b) \in R \} \]

Theorem

\(\text{dom}(R) \) is a set.
Definition (Domain)

\[\text{dom}(R) = \{ a \mid \exists b : (a, b) \in R \} \]

Theorem

\[\text{dom}(R) \text{ is a set.} \]

\[\text{dom}(R) = \{ a \in \text{?} \mid \exists b : (a, b) \in R \} \]
Definition (Domain)

\[\text{dom}(R) = \{ a \mid \exists b : (a, b) \in R \} \]

Theorem

\text{dom}(R) \text{ is a set.}

\[\text{dom}(R) = \{ a \in \ ? \mid \exists b : (a, b) \in R \} \]

\[(a, b) = \{ \{a\}, \{a, b\} \} \in R \]
Definition (Domain)

\[\text{dom}(R) = \{ a \mid \exists b : (a, b) \in R \} \]

Theorem

\(\text{dom}(R) \) is a set.

\[\text{dom}(R) = \{ a \in ? \mid \exists b : (a, b) \in R \} \]

\[(a, b) = \{ \{a\}, \{a, b\} \} \in R \]

\[\{a, b\} \in \bigcup R \]
Definition (Domain)

\[\text{dom}(R) = \{ a \mid \exists b : (a, b) \in R \} \]

Theorem

\[\text{dom}(R) \text{ is a set.} \]

\[\text{dom}(R) = \{ a \in ? \mid \exists b : (a, b) \in R \} \]

\[(a, b) = \{\{a\}, \{a, b\}\} \in R \]

\[\{a, b\} \in \bigcup R \]

\[a \in \bigcup \bigcup R \]
Definition (Domain)

\[\text{dom}(R) = \{ a \mid \exists b : (a, b) \in R \} \]

Theorem

\(\text{dom}(R) \) is a set.

\[\text{dom}(R) = \{ a \in \bigcup \bigcup R \mid \exists b : (a, b) \in R \} \]

\((a, b) = \{\{a\}, \{a, b\}\} \in R\)

\(\{a, b\} \in \bigcup R\)

\(a \in \bigcup \bigcup R\)
Definition (Range)

\[\text{ran}(R) = \{ b \mid \exists a : (a, b) \in R \} \]
Definition (Range)

\[\text{ran}(R) = \{ b \mid \exists a : (a, b) \in R \} \]

Theorem

\text{ran}(R) \text{ is a set.}

\[\text{ran}(R) = \{ b \in \bigcup \bigcup R \mid \exists a : (a, b) \in R \} \]
Definition (Range)

\[\text{ran}(R) = \{b \mid \exists a : (a, b) \in R\} \]

Theorem

\(\text{ran}(R) \) is a set.

\[\text{ran}(R) = \{b \in \bigcup \bigcup R \mid \exists a : (a, b) \in R\} \]

Definition (Field)

\[\text{fld}(R) = \text{dom}(R) \cup \text{ran}(R) \]
5 Operations
Definition (Inverse)
The *inverse* of R is the relation

$$R^{-1} = \{(a, b) \mid (b, a) \in R\}$$
Definition (Inverse)

The *inverse* of R is the relation

$$R^{-1} = \{(a, b) \mid (b, a) \in R\}$$

Theorem

$$(R^{-1})^{-1} = R$$
Definition (Inverse)
The inverse of R is the relation

$$R^{-1} = \{(a, b) \mid (b, a) \in R\}$$

Theorem

$$(R^{-1})^{-1} = R$$

Definition (Restriction)
The restriction of R to X is the relation

$$R|_X = \{(a, b) \in R \mid a \in X\}$$
Definition (Image)
The *image* of X under R is the set

$$R[X] = \{ b \in \text{ran}(R) \mid \exists a \in X : (a, b) \in R \}$$
Definition (Image)

The *image* of X under R is the set

$$R[X] = \{ b \in \text{ran}(R) \mid \exists a \in X : (a, b) \in R \} = \text{ran}(R|_X)$$
Definition (Image)
The image of X under R is the set

$$R[X] = \{ b \in \text{ran}(R) \mid \exists a \in X : (a, b) \in R \} = \text{ran}(R|_X)$$

Definition (Inverse Image)
The inverse image of Y under R is the set

$$R^{-1}[Y] = \{ b \in \text{dom}(R) \mid \exists b \in Y : (a, b) \in R \}$$
Definition (Image)

The *image* of X under R is the set

$$R[X] = \{ b \in \text{ran}(R) \mid \exists a \in X : (a, b) \in R \} = \text{ran}(R|_X)$$

Definition (Inverse Image)

The *inverse image* of Y under R is the set

$$R^{-1}[Y] = \{ b \in \text{dom}(R) \mid \exists b \in Y : (a, b) \in R \} = \text{ran}(R^{-1}|_Y)$$
$R \subseteq A \times B \quad X \subseteq A \quad Y \subseteq B$
$R \subseteq A \times B \quad X \subseteq A \quad Y \subseteq B$

$R^{-1}[R[X]] \subseteq X$

$R[R^{-1}[Y]] \subseteq Y$
$R \subseteq A \times B \quad X \subseteq A \quad Y \subseteq B$

$R^{-1}[R[X]] \neq X$

$R[R^{-1}[Y]] \neq Y$
Theorem

\[R[X_1 \cup X_2] = R[X_1] \cup R[X_2] \]

\[R[X_1 \cap X_2] \subseteq R[X_1] \cap R[X_2] \]

\[R[X_1 \setminus X_2] \supseteq R[X_1] \setminus R[X_2] \]
Theorem

\[R[X_1 \cup X_2] = R[X_1] \cup R[X_2] \]

\[R[X_1 \cap X_2] \subseteq R[X_1] \cap R[X_2] \]

\[R[X_1 \setminus X_2] \supseteq R[X_1] \setminus R[X_2] \]

\[b \in R[X_1 \cup X_2] \]
Theorem

\[R[X_1 \cup X_2] = R[X_1] \cup R[X_2] \]

\[R[X_1 \cap X_2] \subseteq R[X_1] \cap R[X_2] \]

\[R[X_1 \setminus X_2] \supseteq R[X_1] \setminus R[X_2] \]

\[b \in R[X_1 \cup X_2] \iff \exists a \in X_1 \cup X_2 : (a, b) \in R \]
Theorem

\[R[X_1 \cup X_2] = R[X_1] \cup R[X_2] \]

\[R[X_1 \cap X_2] \subseteq R[X_1] \cap R[X_2] \]

\[R[X_1 \setminus X_2] \supseteq R[X_1] \setminus R[X_2] \]

\[b \in R[X_1 \cup X_2] \iff \exists a \in X_1 \cup X_2 : (a, b) \in R \]

\[\iff \exists a \in X_1 : (a, b) \in R \lor \exists a \in X_2 : (a, b) \in R \]
Theorem

\[R[X_1 \cup X_2] = R[X_1] \cup R[X_2] \]

\[R[X_1 \cap X_2] \subseteq R[X_1] \cap R[X_2] \]

\[R[X_1 \setminus X_2] \supseteq R[X_1] \setminus R[X_2] \]

\[b \in R[X_1 \cup X_2] \iff \exists a \in X_1 \cup X_2 : (a, b) \in R \]

\[b \in R[X_1 \cup X_2] \iff \exists a \in X_1 : (a, b) \in R \lor \exists a \in X_2 : (a, b) \in R \]

\[b \in R[X_1 \cup X_2] \iff b \in R[X_1] \lor b \in R[X_2] \]
Definition (Composition)

The *composition* of relations \(R \) and \(S \) is the relation

\[
R \circ S = \{(a, c) \mid \exists b : (a, b) \in S \land (b, c) \in R\}
\]
Definition (Composition)

The \textit{composition} of relations R and S is the relation

$$R \circ S = \{(a, c) \mid \exists b : (a, b) \in S \land (b, c) \in R\}$$

$$R = \{(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 3)\}$$
Definition (Composition)

The *composition* of relations \(R \) and \(S \) is the relation

\[
R \circ S = \{(a, c) \mid \exists b : (a, b) \in S \land (b, c) \in R\}
\]

\[
R = \{(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 3)\}
\]

\[
R \circ R = \{\cdots\}
\]
Definition (Composition)

The composition of relations R and S is the relation

$$R \circ S = \{(a, c) \mid \exists b : (a, b) \in S \land (b, c) \in R\}$$

$$R = \{(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 3)\}$$

$$R \circ R = \{\cdots\}$$

$$\leq \circ \leq =$$
Definition (Composition)

The *composition* of relations R and S is the relation

$$R \circ S = \{(a, c) \mid \exists b : (a, b) \in S \land (b, c) \in R\}$$

$$R = \{(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 3)\}$$

$$R \circ R = \{\cdots\}$$

$$\leq \circ \leq = \leq$$
Definition (Composition)

The \textit{composition} of relations R and S is the relation

$$R \circ S = \{(a, c) \mid \exists b : (a, b) \in S \land (b, c) \in R\}$$

$$R = \{(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 3)\}$$

$$R \circ R = \{\cdots\}$$

$$\leq \circ \leq = \leq$$

$$\leq \circ \geq =$$
Definition (Composition)

The *composition* of relations R and S is the relation

$$R \circ S = \{(a, c) \mid \exists b : (a, b) \in S \land (b, c) \in R\}$$

$$R = \{(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 3)\}$$

$$R \circ R = \{\cdots\}$$

$$\leq \circ \leq = \leq$$

$$\leq \circ \geq = R \times R$$
Theorem

\[(R \circ S)^{-1} = S^{-1} \circ R^{-1}\]
Theorem

\[(R \circ S)^{-1} = S^{-1} \circ R^{-1}\]

\[(a, b) \in (R \circ S)^{-1} \iff \ldots\]
Theorem

\[(R \circ S) \circ T = R \circ (S \circ T)\]
Theorem

\[(R \circ S) \circ T = R \circ (S \circ T)\]

\[(a, b) \in (R \circ S) \circ T \iff \cdots\]
\[(a, b) \in (R \circ S) \circ T\]
\[(a, b) \in (R \circ S) \circ T\]
\[\iff \exists c : (a, c) \in T \land (c, b) \in R \circ S\]
\[(a, b) \in (R \circ S) \circ T \]
\[\iff \exists c : (a, c) \in T \land (c, b) \in R \circ S \]
\[\iff \exists c : (a, c) \in T \land (\exists d : (c, d) \in S \land (d, b) \in R) \]
\[(a, b) \in (R \circ S) \circ T\]
\[\iff \exists c : (a, c) \in T \land (c, b) \in R \circ S\]
\[\iff \exists c : (a, c) \in T \land (\exists d : (c, d) \in S \land (d, b) \in R)\]
\[\iff \exists d : \exists c : (a, c) \in T \land (c, d) \in S \land (d, b) \in R\]
\[(a, b) \in (R \circ S) \circ T\]
\[\iff \exists c : (a, c) \in T \land (c, b) \in R \circ S\]
\[\iff \exists c : (a, c) \in T \land (\exists d : (c, d) \in S \land (d, b) \in R)\]
\[\iff \exists d : \exists c : (a, c) \in T \land (c, d) \in S \land (d, b) \in R\]
\[\iff \exists d : (\exists c : (a, c) \in T \land (c, d) \in S) \land (d, b) \in R\]
\[(a, b) \in (R \circ S) \circ T\]
\[\iff \exists c : (a, c) \in T \land (c, b) \in R \circ S\]
\[\iff \exists c : (a, c) \in T \land (\exists d : (c, d) \in S \land (d, b) \in R)\]
\[\iff \exists d : \exists c : (a, c) \in T \land (c, d) \in S \land (d, b) \in R\]
\[\iff \exists d : (\exists c : (a, c) \in T \land (c, d) \in S) \land (d, b) \in R\]
\[\iff \exists d : (a, d) \in S \circ T \land (d, b) \in R\]
\[(a, b) \in (R \circ S) \circ T\]
\[\iff \exists c : (a, c) \in T \land (c, b) \in R \circ S\]
\[\iff \exists c : (a, c) \in T \land (\exists d : (c, d) \in S \land (d, b) \in R)\]
\[\iff \exists d : \exists c : (a, c) \in T \land (c, d) \in S \land (d, b) \in R\]
\[\iff \exists d : (\exists c : (a, c) \in T \land (c, d) \in S) \land (d, b) \in R\]
\[\iff \exists d : (a, d) \in S \circ T \land (d, b) \in R\]
\[\iff (a, b) \in R \circ (S \circ T)\]
燕小六: “帮我照顾好我七舅姥爷和我外甥女”
“舅姥爷”：姥姥的兄弟
“舅姥爷”：姥姥的兄弟

\[G = \{ (a, b) : a \text{ 是 } b \text{ 的舅姥爷} \} \]
“舅姥爷”：姥姥的兄弟

\[G = \{ (a, b) : a \text{ 是 } b \text{ 的舅姥爷} \} \]

\[M = \{ (a, b) \mid a \text{ is the mother of } b \} \]

\[B = \{ (a, b) \mid a \text{ is the brother of } b \} \]
“舅姥爷”：姥姥的兄弟

\[G = \{(a, b) : a \text{ 是 } b \text{ 的舅姥爷}\} \]

\[M = \{(a, b) \mid a \text{ is the mother of } b\} \]

\[B = \{(a, b) \mid a \text{ is the brother of } b\} \]

\[G = B \circ (M \circ M) \]
“舅姥爷”：姥姥的兄弟

$$G = \{(a, b) : a \text{ 是 b 的舅姥爷}\}$$

$$M = \{(a, b) \mid a \text{ is the mother of } b\}$$

$$B = \{(a, b) \mid a \text{ is the brother of } b\}$$

$$G = B \circ (M \circ M)$$

$$G = B \circ (M \circ M) = (B \circ M) \circ M$$
7 Properties
\(R \subseteq X \times X \)

Definition (Reflexive)

\[\forall a \in X : (a, a) \in R \]
\[R \subseteq X \times X \]

Definition (Reflexive)

\[\forall a \in X : (a, a) \in R \]

Definition (Irreflexive)

\[\forall a \in X : (a, a) \notin R \]
\[A = \{1, 2, 3\}, \quad R \subseteq A \times A \]

\[\{(1, 1), (1, 3), (2, 1), (2, 2), (3, 3)\} \]
\[A = \{1, 2, 3\}, \quad R \subseteq A \times A \]

\[
\{(1, 1), (1, 3), (2, 1), (2, 2), (3, 3)\}
\]

\[
\{(1, 2), (2, 3), (3, 1)\}
\]
\[A = \{1, 2, 3\}, R \subseteq A \times A \]

\(\{(1, 1), (1, 3), (2, 1), (2, 2), (3, 3)\} \)

\(\{(1, 2), (2, 3), (3, 1)\} \)

\(\{(1, 2), (2, 2), (2, 3), (3, 1)\} \)
\(R \subseteq X \times X \)

Definition (Symmetric)

\[\forall a, b \in X : aRb \implies bRa \]

\[a \quad \rightarrow \quad b \]

\[b \quad \rightarrow \quad a \]
Definition (Symmetric)

\[\forall a, b \in X : aRb \implies bRa \]

Definition (AntiSymmetric)

\[\forall a, b \in X : (aRb \land bRa) \implies a = b \]
Definition (Symmetric)

\[\forall a, b \in X : aRb \implies bRa \]

Definition (AntiSymmetric)

\[\forall a, b \in X : (aRb \land bRa) \implies a = b \]
$R \subseteq X \times X$

Definition (Symmetric)

$\forall a, b \in X : aRb \implies bRa$

![Diagram showing symmetric relation between a and b]

Definition (AntiSymmetric)

$\forall a, b \in X : (aRb \land bRa) \implies a = b$

> *is antisymmetric.*
\[A = \{1, 2, 3\}, \quad R \subseteq A \times A \]

\[\{(1, 1), (1, 2), (1, 3), (2, 1), (3, 1), (3, 3)\} \]
\[A = \{1, 2, 3\}, \quad R \subseteq A \times A \]

\[
\{(1, 1), (1, 2), (1, 3), (2, 1), (3, 1), (3, 3)\}
\]

\[
\{(1, 2), (2, 3), (2, 2), (3, 1)\}
\]
\[A = \{1, 2, 3\}, \quad R \subseteq A \times A \]

\[\{(1, 1), (1, 2), (1, 3), (2, 1), (3, 1), (3, 3)\}\]

\[\{(1, 2), (2, 3), (2, 2), (3, 1)\}\]

\[\{(1, 1), (2, 2), (3, 3)\}\]
$A = \{1, 2, 3\}, \quad R \subseteq A \times A$

$\{(1, 1), (1, 2), (1, 3), (2, 1), (3, 1), (3, 3)\}$

$\{(1, 2), (2, 3), (2, 2), (3, 1)\}$

$\{(1, 1), (2, 2), (3, 3)\}$

$\{(1, 2), (2, 1), (2, 3)\}$
\[R \subseteq X \times X \]

Definition (Transitive)

\[\forall a, b, c \in X : aRb \land bRc \implies aRc \]
\[A = \{1, 2, 3\}, R \subseteq A \times A \]

\[\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)\} \]
$A = \{1, 2, 3\}, R \subseteq A \times A$

$\{ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3) \}$

$\{ (1, 2), (2, 3), (3, 1) \}$
\[A = \{1, 2, 3\}, \quad R \subseteq A \times A \]

\[
\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)\}
\]

\[
\{(1, 2), (2, 3), (3, 1)\}
\]

\[
\{(1, 3)\}
\]
$A = \{1, 2, 3\}, R \subseteq A \times A$

$\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)\}$

$\{(1, 2), (2, 3), (3, 1)\}$

$\{(1, 3)\}$

\emptyset
\[R \subseteq X \times X \]

Definition (Connex)

\[\forall a, b \in X : aRb \lor bRa \]
$R \subseteq X \times X$

Definition (Connex)

$\forall a, b \in X : aRb \lor bRa$

Definition (Trichotomous)

$\forall a, b \in X : \text{exactly one of } aRb, bRa, \text{ or } a = b \text{ holds}$
Theorem

\[R \text{ is reflexive } \iff I \subseteq R \]

\[I = \{(a, a) \in A \times A \mid a \in A\} \]
Theorem

R is reflexive $\iff I \subseteq R$

$I = \{(a, a) \in A \times A \mid a \in A\}$

Theorem

R is symmetric $\iff R^{-1} = R$
Theorem

\[R \text{ is reflexive} \iff I \subseteq R \]

\[I = \{(a, a) \in A \times A \mid a \in A\} \]

Theorem

\[R \text{ is symmetric} \iff R^{-1} = R \]

Theorem

\[R \text{ is transitive} \iff R \circ R \subseteq R \]
Theorem

\[R \text{ is reflexive } \iff I \subseteq R \]

\[I = \{(a, a) \in A \times A \mid a \in A\} \]

Theorem

\[R \text{ is symmetric } \iff R^{-1} = R \]

Theorem

\[R \text{ is transitive } \iff R \circ R \subseteq R \]

\[(1, 2), (2, 3), (1, 3), (4, 4)\]
Equivalence Relations
Definition (Equivalence Relation)

\(R \) is an equivalence relation on \(X \) iff \(R \) is

- reflexive
- symmetric
- transitive
Definition (Equivalence Relation)

R is an *equivalence relation* on X iff R is

- reflexive
- symmetric
- transitive

$$a \sim b \iff a \% 12 = b \% 12$$

Why are equivalence relations important?
Definition (Equivalence Relation)

R is an *equivalence relation* on X iff R is

- reflexive
- symmetric
- transitive

\[= \in R \times R \]

\[\parallel \in L \times L \]

Why are equivalence relations important?
Definition (Equivalence Relation)

R is an equivalence relation on X iff R is

- reflexive
- symmetric
- transitive

\[a \sim b \iff a \% 12 = b \% 12 \]
Definition (Equivalence Relation)

\(R \) is an equivalence relation on \(X \) iff \(R \) is

- reflexive
- symmetric
- transitive

\[
\begin{align*}
&\, = \in R \times R \\
&\, \| \in L \times L \\
\Rightarrow &\, a \sim b \iff a \% 12 = b \% 12
\end{align*}
\]

Why are equivalence relations important?
Equivalence Relations as Abstractions
Equivalence Relations as Abstractions
Equivalence Relations as Abstractions

“全国人民代表大会各省代表团”
Equivalence Relations as Abstractions

Equivalence Relation \iff Partition

“全国人民代表大会各省代表团”
Partition

“不空、不漏、不重”
Definition (Partition)

A family of sets \(\{A_\alpha : \alpha \in I\} \) is a partition of \(X \) if

(i) \[
\forall \alpha \in I : A_\alpha \neq \emptyset
\]

(ii) \[
\bigcup_{\alpha \in I} A_\alpha = X
\]

(iii) \[
\forall \alpha, \beta \in I : A_\alpha \cap A_\beta = \emptyset \lor A_\alpha = A_\beta
\]
Definition (Partition)

A family of sets \(\{A_\alpha : \alpha \in I\} \) is a partition of \(X \) if

(i)

\[
\forall \alpha \in I : A_\alpha \neq \emptyset
\]

\[
(\forall \alpha \in I \exists x \in X : x \in A_\alpha)
\]

(ii)

\[
\bigcup_{\alpha \in I} A_\alpha = X
\]

(iii)

\[
\forall \alpha, \beta \in I : A_\alpha \cap A_\beta = \emptyset \lor A_\alpha = A_\beta
\]
Definition (Partition)

A family of sets \(\{A_\alpha : \alpha \in I\} \) is a \textit{partition} of \(X \) if

(i)

\[
\forall \alpha \in I : A_\alpha \neq \emptyset
\]

\[
(\forall \alpha \in I \exists x \in X : x \in A_\alpha)\]

(ii)

\[
\bigcup_{\alpha \in I} A_\alpha = X
\]

\[
(\forall x \in X \exists \alpha \in I : x \in A_\alpha)\]

(iii)

\[
\forall \alpha, \beta \in I : A_\alpha \cap A_\beta = \emptyset \lor A_\alpha = A_\beta
\]
Definition (Partition)

A family of sets \(\{A_\alpha : \alpha \in I\} \) is a *partition* of \(X \) if

(i)

\[
\forall \alpha \in I : A_\alpha \neq \emptyset
\]

\[(\forall \alpha \in I \exists x \in X : x \in A_\alpha)\]

(ii)

\[
\bigcup_{\alpha \in I} A_\alpha = X
\]

\[(\forall x \in X \exists \alpha \in I : x \in A_\alpha)\]

(iii)

\[
\forall \alpha, \beta \in I : A_\alpha \cap A_\beta = \emptyset \lor A_\alpha = A_\beta
\]

\[(\forall \alpha, \beta \in I : A_\alpha \cap A_\beta \neq \emptyset \implies A_\alpha = A_\beta)\]
Equivalence Relation $R \subseteq X \times X \implies$ Partition Π of X
Equivalence Relation $R \subseteq X \times X$ \implies Partition Π of X

Definition (Equivalence Class)
The *equivalence class of a modulo* R is a set:

$$[a]_R = \{ b \in X : aRb \}$$
Equivalence Relation $R \subseteq X \times X \implies$ Partition Π of X

Definition (Equivalence Class)

The *equivalence class of a modulo* R is a set:

$$[a]_R = \{ b \in X : aRb \}$$

Definition (Quotient Set)

The *quotient set* is a set:

$$X/R = \{ [a]_R \mid a \in X \}$$
Theorem

\[X/R = \{ [a]_R \mid a \in X \} \text{ is a partition of } X. \]
Theorem

\[X/R = \{ [a]_R \mid a \in X \} \text{ is a partition of } X. \]

\[\forall a \in X : [a]_R \neq \emptyset \]
Theorem

\[X/R = \{ [a]_R \mid a \in X \} \text{ is a partition of } X. \]

\[\forall a \in X : [a]_R \neq \emptyset \]

\[\forall a \in X : \exists b \in X : a \in [b]_R \]
Theorem

\[X/R = \{[a]_R \mid a \in X\} \text{ is a partition of } X. \]

\[\forall a \in X : [a]_R \neq \emptyset \]

\[\forall a \in X : \exists b \in X : a \in [b]_R \]

Theorem

\[\forall a \in X, b \in X : [a]_R \cap [b]_R = \emptyset \lor [a]_R = [b]_R \]
Theorem

\[X/R = \{ [a]_R \mid a \in X \} \text{ is a partition of } X. \]

\[\forall a \in X : [a]_R \neq \emptyset \]

\[\forall a \in X : \exists b \in X : a \in [b]_R \]

Theorem

\[\forall a \in X, b \in X : [a]_R \cap [b]_R = \emptyset \vee [a]_R = [b]_R \]

\[\forall a \in X, b \in X : [a]_R \cap [b]_R \neq \emptyset \implies [a]_R = [b]_R \]
Partition Π of X \Rightarrow Equivalence Relation $R \subseteq X \times X$
Partition Π of $X \implies$ Equivalence Relation $R \subseteq X \times X$

Definition

$$(a, b) \in R \iff \exists S \in \Pi : a \in S \land b \in S$$

Theorem R is an equivalence relation on X.

$\forall x \in X : xRx$

$\forall x, y \in X : xRy \implies yRx$

$\forall x, y, z \in X : xRy \land yRz \implies xRz$
Partition Π of $X \implies$ Equivalence Relation $R \subseteq X \times X$

Definition

$$(a, b) \in R \iff \exists S \in \Pi : a \in S \land b \in S$$

$$R = \{(a, b) \in X \times X \mid \exists S \in \Pi : a \in S \land b \in S\}$$
Partition Π of $X \implies$ Equivalence Relation $R \subseteq X \times X$

Definition

$$(a, b) \in R \iff \exists S \in \Pi : a \in S \land b \in S$$

$$R = \{(a, b) \in X \times X \mid \exists S \in \Pi : a \in S \land b \in S\}$$

Theorem

R is an equivalence relation on X.

Partition Π of $X \implies$ Equivalence Relation $R \subseteq X \times X$

Definition

$$(a, b) \in R \iff \exists S \in \Pi : a \in S \land b \in S$$

$$R = \{(a, b) \in X \times X \mid \exists S \in \Pi : a \in S \land b \in S\}$$

Theorem

R is an equivalence relation on X.

$$\forall x \in X : xRx$$
Partition Π of $X \implies$ Equivalence Relation $R \subseteq X \times X$

Definition

$$(a, b) \in R \iff \exists S \in \Pi : a \in S \land b \in S$$

$$R = \{(a, b) \in X \times X | \exists S \in \Pi : a \in S \land b \in S\}$$

Theorem

R is an equivalence relation on X.

$$\forall x \in X : xRx$$

$$\forall x, y \in X : xRy \implies yRx$$
Partition Π of X \implies Equivalence Relation $R \subseteq X \times X$

Definition

$$(a, b) \in R \iff \exists S \in \Pi : a \in S \land b \in S$$

$$R = \{(a, b) \in X \times X \mid \exists S \in \Pi : a \in S \land b \in S\}$$

Theorem

R is an equivalence relation on X.

$$\forall x \in X : xRx$$

$$\forall x, y \in X : xRy \implies yRx$$

$$\forall x, y, z \in X : xRy \land yRz \implies xRz$$
Equivalence Relation \iff Partition
Definition

\[\sim \subseteq \mathbb{N} \times \mathbb{N} \]

\[(a, b) \sim (c, d) \iff a +_\mathbb{N} d = b +_\mathbb{N} c \]
Definition

\[\sim \subseteq \mathbb{N} \times \mathbb{N} \]

\[(a, b) \sim (c, d) \iff a +_{\mathbb{N}} d = b +_{\mathbb{N}} c\]

Theorem

\(\sim\) is an equivalence relation.
Definition

\[\sim \subseteq \mathbb{N} \times \mathbb{N} \]

\[(a, b) \sim (c, d) \iff a +_\mathbb{N} d = b +_\mathbb{N} c \]

Theorem

\[\sim \text{ is an equivalence relation.} \]

\[Q: \text{What is } \mathbb{N} \times \mathbb{N}/\sim? \]
Definition

\[\sim \subseteq \mathbb{N} \times \mathbb{N} \]

\[(a, b) \sim (c, d) \iff a +_\mathbb{N} d = b +_\mathbb{N} c\]

Theorem

\[\sim\] is an equivalence relation.

Q: What is \(\mathbb{N} \times \mathbb{N}/\sim \)?

Definition (\(\mathbb{Z}\))

\[\mathbb{Z} \triangleq \mathbb{N} \times \mathbb{N}/\sim\]
Definition

\[\sim \subseteq \mathbb{N} \times \mathbb{N} \]

\[(a, b) \sim (c, d) \iff a +_\mathbb{N} d = b +_\mathbb{N} c \]

Theorem

\(\sim \) is an equivalence relation.

\[Q : \text{What is } \mathbb{N} \times \mathbb{N}/\sim ? \]

Definition (\(\mathbb{Z}\))

\[\mathbb{Z} \triangleq \mathbb{N} \times \mathbb{N}/\sim \]

\[[(1, 3)]_\sim = \{(0, 2), (1, 3), (2, 4), (3, 5), \ldots \} \triangleq -2 \in \mathbb{Z} \]
\[\mathbb{Z} \triangleq \mathbb{N} \times \mathbb{N} / \sim \]
Definition ($+\mathbb{Z}$)

\[(m_1, n_1) + \mathbb{Z} (m_2, n_2) = [m_1 + \mathbb{N} m_2, n_1 + \mathbb{N} n_2]\]
Definition ($+\mathbb{Z}$)

\[[(m_1, n_1)] +_{\mathbb{Z}} [(m_2, n_2)] = [m_1 +_{\mathbb{N}} m_2, n_1 +_{\mathbb{N}} n_2] \]

Definition ($\cdot_{\mathbb{Z}}$)

\[[(m_1, n_1)] \cdot_{\mathbb{Z}} [(m_2, n_2)] = [m_1 \cdot_{\mathbb{N}} m_2 +_{\mathbb{N}} n_1 \cdot_{\mathbb{N}} n_2, m_1 \cdot_{\mathbb{N}} n_2 +_{\mathbb{N}} n_1 \cdot_{\mathbb{N}} m_2] \]
Definition

\[\sim \subseteq \mathbb{Z} \times \mathbb{Z} \setminus \{0\} \]

\[(a, b) \sim (c, d) \iff a \cdot \mathbb{Z} d = b \cdot \mathbb{Z} c\]
Definition

\[\sim \subseteq \mathbb{Z} \times \mathbb{Z} \setminus \{0\} \]

\[(a, b) \sim (c, d) \iff a \cdot \mathbb{Z} d = b \cdot \mathbb{Z} c\]

Definition \((\mathbb{Q})\)

\[\mathbb{Q} \triangleq \mathbb{Z} \times \mathbb{Z} / \sim \]
\[\mathbb{Q} \triangleq \mathbb{Z} \times \mathbb{Z} / \sim \]
How to define \mathbb{R} as equivalence classes of ordered pairs of \mathbb{Q}?
How to define \mathbb{R} as equivalence classes of ordered pairs of \mathbb{Q}?
Thank You!