Group Homomorphism

Hengfeng Wei

hfwei@nju.edu.cn

March 21 ~ March 23, 2017

Group Homomorphism

(1) Groups of Small Orders
(2) Homomorphism
\qquad

Order of 4

$$
G \cong \mathbb{Z}_{4}
$$

$$
G \cong K_{4}=\left\langle a, b \mid a^{2}=b^{2}=(a b)^{2}=e\right\rangle(V)
$$

Order of 6

$$
\begin{aligned}
& G \cong \mathbb{Z}_{6} \\
& G \cong S_{3}
\end{aligned}
$$

Order of 8 (TJ 9.11)

$$
\begin{gathered}
1,2,4,8\left(\mathbb{Z}_{8}\right) \\
\forall g \in G:|g|=2 \Longrightarrow \text { abelian } \\
G=\{e, a, b, c, a b, a c, b c, a b c\} \\
G=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=e, a b=b a, a c=c a, b c=c b\right\rangle \\
H_{1}=\{e, a\}, H_{2}=\{e, b\}, H_{3}=\{e, c\} \Longrightarrow G \cong H_{1} \times H_{2} \times H_{3} \\
f(a)=(1,0,0), f(b)=(0,1,0), f(c)=(0,0,1)
\end{gathered}
$$

$|a|=4(\mathrm{TJ} 9.11)$

$$
\begin{gathered}
|a|=4: G=\left\{e, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\} \\
b a=?, \quad|b|=? \\
b a \in\left\{a b, a^{2} b, a^{3} b\right\}, b^{2} \in\left\{e, a, a^{2}, a^{3}\right\} \\
b^{2}=a \Longrightarrow b^{4}=a^{2} \neq e \\
b^{2}=a^{3} \Longrightarrow b^{4}=a^{6} \neq e
\end{gathered}
$$

$b^{2}=e(\mathrm{TJ} 9.11)$

$$
\begin{gathered}
b a=a b \Longleftrightarrow b a b^{-1}=a: G=\left\{e, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\} \\
H=\left\{e, a, a^{2}, a^{3}\right\}, K=\{e, b\} \Longrightarrow G \cong H \times K \cong \mathbb{Z}_{4} \times \mathbb{Z}_{2} \\
f(a)=(1,0), f(b)=(0,1) \\
b a=a^{2} b \Longrightarrow a=b^{-1} a^{2} b \Longrightarrow a^{2}=b^{-1} a^{4} b=e \\
b a=a^{3} b \Longrightarrow b a b^{-1}=a^{3}=a^{-1} \Longrightarrow G \cong D_{4}
\end{gathered}
$$

$b^{2}=a^{2}(\mathrm{TJ} 9.11)$

$$
\begin{gathered}
b^{2}=a^{2} \neq e, b^{3}=a^{2} b \neq e, b^{4}=a^{4}=e \Longrightarrow|b|=4 \\
b a=a b: G=\left\{e, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\} \\
H=\left\{e, a, a^{2}, a^{3}\right\}, K=\{e, a b\} \Longrightarrow G \cong H \times K \cong \mathbb{Z}_{4} \times \mathbb{Z}_{2} \\
b a=a^{2} b \Longrightarrow b a=b^{3} \Longrightarrow a=b^{2}=a^{2} \\
b a=a^{3} b \Longrightarrow a^{4}=1, a^{2}=b^{2}, b a b^{-1}=a^{-1} \\
Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}: i^{2}=j^{2}=k^{2}=i j k=-1
\end{gathered}
$$

Quaternion group: Example 3.15, P42, 2016; Example 3.8, P44, 2010

Group Homomorphism

(1) Groups of Small Orders
(2) Homomorphism

$D_{6} \cong D_{3} \times \mathbb{Z}_{2}($ TJ 9.16)

$$
D_{6}=\left\{1, r, r^{2}, r^{3}, r^{4}, r^{5}, s, r s, r^{2} s, r^{3} s, r^{4} s, r^{5} s\right\}\left(r^{6}=1, s^{2}=1, s r s=r^{-1}\right)
$$

$$
D_{3}=\left\{1, \rho, \rho^{2}, \lambda, \rho \lambda, \rho^{2} \lambda\right\}\left(\rho^{3}=1, \lambda^{2}=1, \lambda \rho \lambda=\rho^{-1}\right)
$$

$$
\mathbb{Z}_{2}=\{0,1\}
$$

$$
f: D_{6} \rightarrow D_{3} \times \mathbb{Z}_{2}
$$

$$
f: r \mapsto(\rho, 1), s \mapsto(\lambda, 1)
$$

$$
D_{8} \cong D_{4} \times \mathbb{Z}_{2}
$$

(TJ 9.16)

$$
\begin{gathered}
D_{2 n} \cong D_{n} \times \mathbb{Z}_{2}(n \text { is odd }) \\
f: r \mapsto(\rho, 1), s \mapsto(\lambda, 1) \\
f:\left(r^{i} s^{j} \mapsto(\rho, 1)^{i}(\lambda, 1)^{j}=\left(\rho^{i} \lambda^{j}, 1^{i+j}\right)(0 \leq i<n, j \in\{0,1\})\right. \\
f\left(\left(r^{i_{1}} s^{j_{1}}\right)\left(r^{i_{2}} s^{j_{2}}\right)\right)=\left(\rho^{i_{1}} \lambda^{j_{1}}, 1^{i_{1}+j_{1}}\right)\left(\rho^{i_{2}} \lambda^{j_{2}}, 1^{i_{2}+j_{2}}\right) \\
f\left(r^{i_{1}} s^{j_{1}} r^{i_{2}} s^{j_{2}}\right)=\left(\rho^{i_{1}} \lambda^{j_{1}} \rho^{i_{2}} \lambda^{j_{2}}, 1^{i_{1}+j_{1}+i_{2}+j_{2}}\right) \\
s r^{k}=r^{-k} s, r^{k} s=s r^{-k} \\
j_{1} \text { even or odd? }
\end{gathered}
$$

(TJ 9.16)

f is one-to-one

$$
\begin{gathered}
f\left(r^{i_{1}} s^{j_{1}}\right)=f\left(r^{i_{2}} s^{j_{2}}\right) \\
\rho^{i_{1}} \lambda^{j_{1}}=\rho^{i_{2}} \lambda^{j_{2}}, 1^{i_{1}+j_{1}}=1^{i_{2}+j_{2}} \\
\rho^{i_{1}-i_{2}}=\lambda^{j_{2}-j_{1}} \\
i_{1}=i_{2}, \quad j_{1}=j_{2}
\end{gathered}
$$

(TJ 9.16)

$$
\begin{gathered}
H=\left\langle r^{2}, s\right\rangle \cong D_{n} \\
Z=\left\{1, r^{n}\right\} \\
D_{2 n}=H Z, \quad H \cap Z=\emptyset, \quad h z=z h \forall h \in H, z \in Z
\end{gathered}
$$

$G \cong H \times Z \quad($ Theorem 9.27, P158, 2016; Theorem 9.13, P150, 2010)

$$
\left|Z\left(D_{2 n}\right)\right|=2,\left|Z\left(D_{n} \times \mathbb{Z}_{2}\right)\right|=4 \quad(\text { if } n=2 k)
$$

$$
\begin{aligned}
& G \times K \cong H \times K \nRightarrow G \cong H \\
& G=\mathbb{Z}, \quad H=1, \quad K=\prod_{n \in \mathbb{N}} \mathbb{Z}
\end{aligned}
$$

"On Cancellation in Groups" by R. Hirshon, 1969

$$
G \times K \cong H \times K \quad|K|<\infty \Longrightarrow G \cong H
$$

(TJ 11.18)

- $\phi: G_{1} \rightarrow G_{2}$
- $H_{1} \triangleleft G_{1}$
- $\phi\left(H_{1}\right)=H_{2}$
- $G_{1} / H_{1} \cong G_{2} / H_{2}$

$$
G_{1}=\mathbb{Z}_{2} \quad G_{2}=\{e\} \quad H_{1}=\{0\} \quad H_{2}=\{e\}
$$

(TJ 11.5)

$$
\phi: \mathbb{Z}_{24} \rightarrow \mathbb{Z}_{18}
$$

$$
\begin{aligned}
\phi(1)=a & \Longrightarrow \phi(x)=a x(\bmod 18) \\
& \Longrightarrow \operatorname{Ker}(\phi)=\mathbb{Z}_{b} \cap \mathbb{Z}_{24}: a b \equiv 0(\bmod 18)
\end{aligned}
$$

$$
\phi(1)=?
$$

$|\phi(1)||18 \wedge| \phi(1)||24 \Longrightarrow| \phi(1)| \mid 6$

$$
\phi(1)=0,9,6,12,3,15
$$

$$
\phi_{3}(x)=6 x, \quad K e r\left(\phi_{3}\right)=3 \mathbb{Z}_{24}
$$

Normal subgroups

$$
\mathbb{Z} / n \mathbb{Z}
$$

$$
(a H)(b H)=(a b H)
$$

$\forall a, b \in G, \forall h_{1}, h_{2} \in H,\left(a h_{1}\right) \in a H,\left(b h_{2}\right) \in b H:\left(a h_{1}\right)\left(b h_{2}\right) \in a b H$

$$
\begin{gathered}
\exists h_{3} \in H,\left(a h_{1}\right)\left(b h_{2}\right)=a b h_{3} \Longleftrightarrow h_{1} b=b h_{3} h_{2}^{-1} \\
\forall b \in G, \forall h_{1} \in H: \exists h^{\prime} \in H: h_{1} b=b h^{\prime} \\
\forall g \in G, \forall h \in H: \exists h^{\prime} \in H: h g=g h^{\prime}
\end{gathered}
$$

Normal subgroups

$$
\begin{gathered}
\forall g \in G, \forall h \in H: \exists h^{\prime} \in H: h g=g h^{\prime} \\
\forall g \in G, H g \subseteq g H \\
\forall g^{-1} \in G, H g^{-1} \subseteq g^{-1} H \\
\forall h \in H, \exists h^{\prime} \in H: h g^{-1}=g^{-1} h^{\prime} \Longleftrightarrow g h=h^{\prime} g
\end{gathered}
$$

$$
\forall g \in G, H g \subseteq g H
$$

$$
\forall g \in G, H g=g H
$$

Normal subgroups

$$
\begin{gathered}
\forall g \in G, \forall h \in H: \exists h^{\prime} \in H: h g=g h^{\prime} \Longleftrightarrow g^{-1} h g=h^{\prime} \\
\forall g \in G, g^{-1} H g \subseteq H \\
\forall g \in G,\left(g^{-1}\right)^{-1} H g^{-1}=g H g^{-1} \subseteq H
\end{gathered}
$$

$$
\forall g \in G, \forall h \in H, \exists h^{\prime} \in H: g h g^{-1}=h^{\prime} \Longleftrightarrow h=g^{-1} h^{\prime} g
$$

$$
\forall g \in G, H \subseteq g^{-1} H g
$$

$$
\forall g \in G, g^{-1} H g=H
$$

$$
\forall g \in G, g H g^{-1}=H
$$

(TJ 10.13)

$$
\begin{gathered}
g \in G, C(g)=\{x \in G: g x=x g\} \\
Z(G)=\{x \in G: g x=x g, \forall g \in G\} \Longrightarrow Z(G) \triangleleft G \\
C(g) \leq G \\
\langle g\rangle \triangleleft G \Longrightarrow C(g) \triangleleft G
\end{gathered}
$$

(TJ 10.13)

$$
\forall k \in G, x \in C(g): k^{-1} x k \in C(g)
$$

$$
\forall k \in G, x \in C(g): g k^{-1} x k=k^{-1} x k g
$$

$$
\begin{gathered}
\langle g\rangle \triangleleft G \Longrightarrow k\langle g\rangle=\langle g\rangle k \Longrightarrow \exists t, k g=g^{t} k \Longleftrightarrow g k^{-1}=k^{-1} g^{t} \\
g k^{-1} x k=k^{-1} x g^{t} k \Longleftrightarrow k^{-1} g^{t} x k=k^{-1} x g^{t} k
\end{gathered}
$$

