计算机问题求解 - 论题1-11 - 有限与无限

2015年12月10日

"聪明的经理"、"非常聪明的经理"和"非常聪明的经理"

问题1。

你能给我 们讲讲这 个故事吗?

集合的等势

To make precise what it means for two sets (even two infinite sets) to have the same number of elements, we need a definition. We say that a set A is equivalent to a set B if there exists a bijection $f: A \rightarrow B$. We write $A \approx B$ for A is equivalent to B. (Other authors use the words equipotent or equinumerous.)

问题2:

你原来脑海中的"两个集合元素一样多" 的概念是什么样的呢?对无穷集合适用吗?

问题3: 如何精确定义什么是有限集?

We say that a set

S is **finite** if either $S = \emptyset$ or if S is equivalent to the set $\{1, 2, 3, ..., n\}$ for some positive integer n.

更加数学化的表述:(每一个自然数也是一个集合)
空集记为0;
如果 k是自然数,则其"后继"为: k ∪ {k}。
于是:
有限集就是与某个自然数等势的集合。

问题4:

什么是无限集合?

提示:有限集就是与某个自然数等势的集合

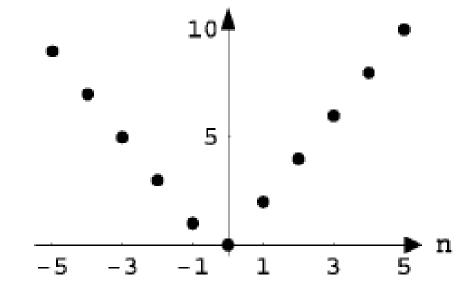
自然数集与整数集等势

 $f: \mathbb{Z} \to \mathbb{N}$ explicitly as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \ge 0 \\ -(1+2x) & \text{otherwise} \end{cases}$$

"排队";

$$0, -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, \dots$$



关于双射的证明(1)

 $f: \mathbb{Z} \to \mathbb{N}$ explicitly as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \ge 0\\ -(1+2x) & \text{otherwise} \end{cases}$$

注意:

不能遗漏了case 3!

Proof that f is one-to-one.

Let $m, n \in \mathbb{Z}$ and suppose that $f(m) \neq f(n)$.

- Case 1. Suppose that $m \ge 0$ and $n \ge 0$. Then f(m) = 2m and f(n) = 2n. Thus 2m = 2n, and therefore m = n.
- Case 2. Suppose that m < 0 and n < 0. Then f(m) = -2m 1 and f(n) = -2n 1. Thus, -2m 1 = -2n 1, and therefore m = n.
- Case 3. Suppose that one of the two, say m, is nonnegative, and the other is negative. Then f(m) = 2m and f(n) = -2n 1. Thus 2m = -2n 1. But this means that an even number, 2m, is equal to an odd number, -2n-1, which is impossible.

Therefore, if f(m) = f(n), only case 1 and case 2 can occur. In either of these cases, we have shown that m = n. Thus f is one-to-one.

关于双射的证明(2)

 $f: \mathbb{Z} \to \mathbb{N}$ explicitly as follows:

$$f(x) = \begin{cases} 2x & \text{if } x \ge 0 \\ -(1+2x) & \text{otherwise} \end{cases}$$

Proof that f maps \mathbb{Z} onto \mathbb{N} .

Let $k \in \mathbb{N}$. If k is even, then k = 2m for some $m \in \mathbb{Z}$ with $m \ge 0$. Thus, $m \in \mathbb{Z}$ and f(m) = 2m = k. If k is odd, then k + 1 is even. Hence $m = (k + 1)/(-2) \in \mathbb{Z}$. Since $k \ge 1$, we have m < 0. Thus, f(m) = -2m - 1 = -2((k + 1)/(-2)) - 1 = k. We conclude that for all $k \in \mathbb{N}$, there exists $m \in \mathbb{Z}$ such that f(m) = k. Since $f : \mathbb{Z} \to \mathbb{N}$ is a well-defined function, f maps \mathbb{Z} onto \mathbb{N} .

无穷不仅仅是"很多很多"

伽利略悖论: 整体与局部"一样大"!

Theorem 20.6.

Let A, B, C, and D be nonempty sets. Suppose that $A \cap B = \emptyset$, $C \cap D = \emptyset$, $A \approx C$, and $B \approx D$. Then $A \cup B \approx C \cup D$.

Corollary 20.8.

Let A and B be disjoint sets. If A and B are finite, then $A \cup B$ is finite.

Theorem 20.10.

Let n be a positive integer. Then every subset of $\{1, 2, 3, ..., n\}$ is finite.

Corollary 20.11.

Let S be a finite set. Then every subset of S is finite.

Theorem 20.12.

The union of two finite sets is finite.

问题7:

为什么"鸽巢原理"在证明一个集合是无限集合时有关键的应用?

鸽巢:"证明策略"和"数学定理"

In its popular form, the principle says that if there are more pigeons than holes, then at least one hole is the home of more than one pigeon.

Theorem 21.2 (Pigeonhole principle).

Let m and n be positive integers with m > n, and let f be a map satisfying $f: \{1, \ldots, m\} \rightarrow \{1, \ldots, n\}$. Then f is not one-to-one.

The proof of the pigeonhole principle summarizes much of what you learned: mathematical induction, proof in cases, and one-to-one functions.

问题8:

你能简述一下这个证明的基本思路吗?

对于"一对一"性质的满足。一个函数与其在定义域的某个工作处于集上的"限制"相互是什么关系?

自然数集是无限集

反证法

Suppose to the contrary that \mathbb{N} is finite. Since $\mathbb{N} \neq \emptyset$ there exists an integer m and a one-to-one mapping, g, of \mathbb{N} onto $\{1, 2, \ldots, m\}$. Now $\{1, 2, \ldots, m+1\} \subseteq \mathbb{N}$, so we may consider the restriction $g|_{\{1, 2, \ldots, m+1\}}: \{1, 2, \ldots, m+1\} \to \{1, 2, \ldots, m\}$. The pigeonhole principle (Theorem 21.2) implies that $g|_{\{1, 2, \ldots, m+1\}}$ is not one-to-one. This, in turn, implies (as you surely showed in Exercise 20.9) that g is not one-to-one, contradicting our choice of g. Therefore, it must be the case that \mathbb{N} is infinite.

有限集合的"势" (cardinality)

Theorem 21.6.

Let A be a nonempty finite set. There is a unique positive integer n such that $A \approx \{1, ..., n\}$.

正因为这样的n的唯一性,可以定义集合的"势"。

问题10:

如果不唯一。怎样能构造出与"鸽巢原理"的矛盾来?

可数集

An infinite set *A* is said to be **countably infinite** if $A \approx \mathbb{N}$.

A set is countable if it is either finite or countably infinite.

a nonempty set A is countable if and only if there exists a one-to-one function $f: A \to \mathbb{N}$.

注意:

这个性质使得我们可以不区分有限或无限可数; 通常找一个一对一的函数比找一个双射容易。

可数集的子集是可数集

可以比拟为"辅助线"的定理:

Every subset of \mathbb{N} is countable.

- "N与其任一无限子集T之间存在双射"证明的基本思路:
 - 1. 建立一个函数f: f(k)=T中第k个"最小"元素;
 - 2. 证明f是一对一的: 函数值构成严格递增序列;
 - 3. 证明f 是满射:对T 中任何元素s,假设比s 小的元素有n 个,则f(n+1)=s。

有理数集是可数集

我们似乎没法"数"有理数,但是有理数集是"可数"集。

I see it but I do not believe it.—Georg Cantor

We will begin by showing that \mathbb{Q}^+ is countable. We define $f:\mathbb{Q}^+\to$ $\mathbb{N} \times \mathbb{N}$ as follows. Write each member of \mathbb{Q}^+ as p/q where p,q>0and p/q is in reduced form; that is, p and q have no positive common factor other than 1. Now define f(p/q) = (p,q). Because p/qis in reduced form, f is well-defined and one-to-one. Since $\mathbb{N} \times \mathbb{N}$ is countable (Theorem 22.8), and $f(\mathbb{Q}^+)$ is a subset of it, we know from Corollary 22.4 that $f(\mathbb{Q}^+)$ is countable. Hence \mathbb{Q}^+ is countable. Now the set of negative rationals, \mathbb{Q}^- , is equivalent to \mathbb{Q}^+ . Since $\mathbb{Q} = \mathbb{Q}^+ \cup \mathbb{Q}^- \cup \{0\}$, and we have a finite union of countable sets, we use Corollary 22.7 to conclude that Q is countable. Since Q is infinite we know that it is countably infinite.

但是实数集不是可数集!

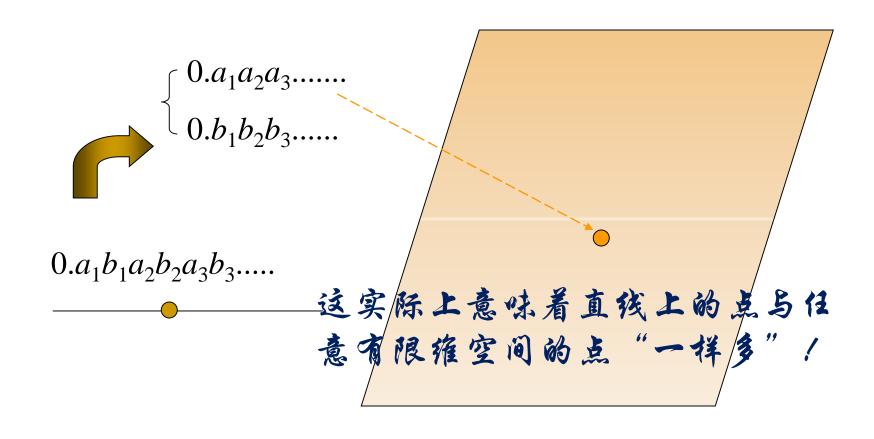
Cantor's diagonalization argument

$$f(1) = 0.a_{11}a_{12}a_{13}...$$

 $f(2) = 0.a_{21}a_{22}a_{23}...$
 $f(3) = 0.a_{31}a_{32}a_{33}...$
 \vdots
 $f(n) = 0.a_{n1}a_{n2}a_{n3}...a_{nn}...$

$$b = 0.\mathbf{b_1b_2b_3}...$$

直线上的点集与平面上的点集等势



康托尔定理 - 没有"最大"的集合

- 任何集合与其幂集不等势 即: A≈ρ(A)
 - □ 证明要点:

设g是从A到 ρ (A)的函数,构造

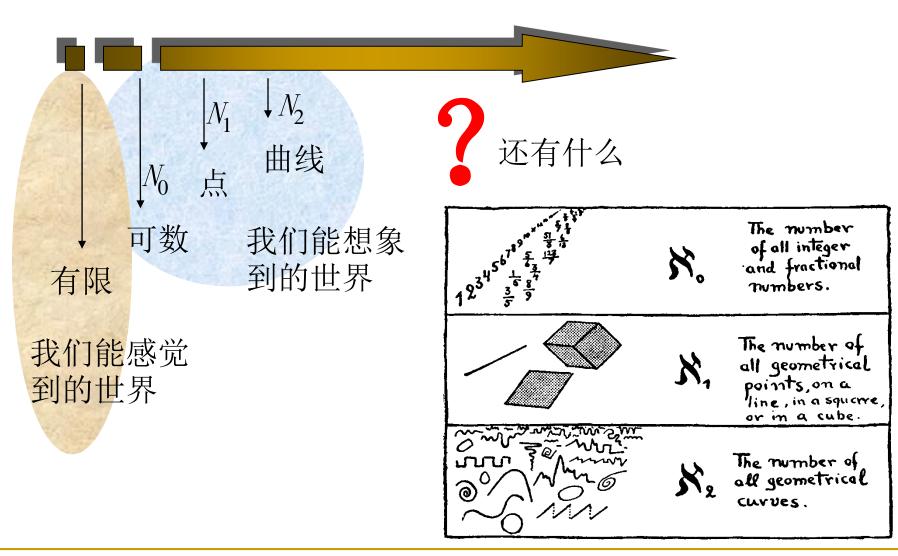
$$B=\{x|$$

则B∈ ρ (A),但不可能存在x 这样的x,则x∈B iff. x \notin B。

因此, g不可能是满射。

问题10: 你从这个证明中看到康托尔对角线证明 法了吗?

集合的"大小" - 基数



家庭作业

UD

- problems: 20.4, 20.8-10;
- problems: 21.7, 21.9-11, 21.16-19;
- problems: 22.1-3, 22.6, 22.9
- problems: 23.2-3, 23.10