3-12 Matching & Covers

Jun Ma

majun@nju.edu.cn

December 10, 2020

Jun Ma (majun@nju.edu.cn)

3-12 Matching & Covers

P → (Ξ) → Ξ) → Ξ → Ω へ へ
 December 10, 2020 1/16

Jun Ma (majun@nju.edu.cn)

3-12 Matching & Covers

December 10, 2020 2 / 16

・ロト ・四ト ・ヨト ・ヨト 三田

Figure 8.5 shows two bipartite graphs G_1 and G_2 , each with partite sets $U = \{v, w, x, y, z\}$ and $W = \{a, b, c, d, e\}$. In each case, can U be matched to W?

Figure 8.5: The graphs G_1 and G_2 in Exercise 8.3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへの

Figure 8.5 shows two bipartite graphs G_1 and G_2 , each with partite sets $U = \{v, w, x, y, z\}$ and $W = \{a, b, c, d, e\}$. In each case, can U be matched to W?

Figure 8.5: The graphs G_1 and G_2 in Exercise 8.3

Figure 8.5 shows two bipartite graphs G_1 and G_2 , each with partite sets $U = \{v, w, x, y, z\}$ and $W = \{a, b, c, d, e\}$. In each case, can U be matched to W?

Figure 8.5: The graphs G_1 and G_2 in Exercise 8.3

Figure 8.5 shows two bipartite graphs G_1 and G_2 , each with partite sets $U = \{v, w, x, y, z\}$ and $W = \{a, b, c, d, e\}$. In each case, can U be matched to W?

Figure 8.5: The graphs G_1 and G_2 in Exercise 8.3

Jun Ma (majun@nju.edu.cn)

3-12 Matching & Covers

December 10, 2020

2/16

Prove that every tree has at most one perfect matching.

3

イロト イヨト イヨト イヨト

Prove that every tree has at most one perfect matching.

Proof.

• If |T| = 2k + 1, there is no perfect matching.

Prove that every tree has at most one perfect matching.

Proof.

▶ If |T| = 2k + 1, there is no perfect matching. ✓

$\mathrm{CZ}~8.5$

Prove that every tree has at most one perfect matching.

- ▶ If |T| = 2k + 1, there is no perfect matching. ✓
- If |T| = 2k, prove by introduction on k.
 - **B**: k = 1, obviously holds
 - **H**: assume the property hold for all k < m

• I:
$$k = m$$

$\mathrm{CZ}~8.5$

Prove that every tree has at most one perfect matching.

- ▶ If |T| = 2k + 1, there is no perfect matching. ✓
- If |T| = 2k, prove by introduction on k.
 - **B**: k = 1, obviously holds
 - **H**: assume the property hold for all k < m

• I:
$$k = m$$

Prove that every tree has at most one perfect matching.

- ▶ If |T| = 2k + 1, there is no perfect matching. ✓
- If |T| = 2k, prove by introduction on k.
 - **B**: k = 1, obviously holds
 - **H**: assume the property hold for all k < m
 - ▶ **I**: *k* = *m*
 - ▶ T is a tree ⇒ there must be at least one vertex $v \in T$ s.t. deg v = 1. Assume $(u, v) \in T.E$. If T has a perfect matching M, $(u, v) \in M$

Prove that every tree has at most one perfect matching.

- ▶ If |T| = 2k + 1, there is no perfect matching. ✓
- If |T| = 2k, prove by introduction on k.
 - **B**: k = 1, obviously holds
 - **H**: assume the property hold for all k < m
 - ▶ **I**: *k* = *m*
 - ▶ T is a tree ⇒ there must be at least one vertex $v \in T$ s.t. deg v = 1. Assume $(u, v) \in T.E$. If T has a perfect matching M, $(u, v) \in M$
 - ▶ $T \{u, v\}$ would generate a set of component $\{T_1, T_2, ..., T_x\}$ $(x \ge 1)$

Prove that every tree has at most one perfect matching.

- ▶ If |T| = 2k + 1, there is no perfect matching. ✓
- If |T| = 2k, prove by introduction on k.
 - **B**: k = 1, obviously holds
 - **H**: assume the property hold for all k < m
 - ▶ **I**: *k* = *m*
 - ▶ T is a tree ⇒ there must be at least one vertex $v \in T$ s.t. deg v = 1. Assume $(u, v) \in T.E$. If T has a perfect matching M, $(u, v) \in M$
 - ▶ $T \{u, v\}$ would generate a set of component $\{T_1, T_2, ..., T_x\}$ $(x \ge 1)$
 - If the order of any T_i is odd, then T has no perfect matching.

Prove that every tree has at most one perfect matching.

- ▶ If |T| = 2k + 1, there is no perfect matching. ✓
- If |T| = 2k, prove by introduction on k.
 - **B**: k = 1, obviously holds
 - **H**: assume the property hold for all k < m
 - ▶ **I**: *k* = *m*
 - ▶ T is a tree ⇒ there must be at least one vertex $v \in T$ s.t. deg v = 1. Assume $(u, v) \in T.E$. If T has a perfect matching M, $(u, v) \in M$
 - ▶ $T \{u, v\}$ would generate a set of component $\{T_1, T_2, ..., T_x\}$ $(x \ge 1)$
 - ▶ If the order of any T_i is odd, then T has no perfect matching. ✓

Prove that every tree has at most one perfect matching.

- ▶ If |T| = 2k + 1, there is no perfect matching. ✓
- If |T| = 2k, prove by introduction on k.
 - **B**: k = 1, obviously holds
 - **H**: assume the property hold for all k < m
 - ▶ **I**: *k* = *m*
 - ▶ T is a tree ⇒ there must be at least one vertex $v \in T$ s.t. deg v = 1. Assume $(u, v) \in T.E$. If T has a perfect matching M, $(u, v) \in M$
 - ▶ $T \{u, v\}$ would generate a set of component $\{T_1, T_2, ..., T_x\}$ $(x \ge 1)$
 - ▶ If the order of any T_i is odd, then T has no perfect matching. ✓
 - Otherwise, each T_i has even order. And by **H**, we could find **exactly one** perfect matching M_i for each T_i .

Prove that every tree has at most one perfect matching.

- ▶ If |T| = 2k + 1, there is no perfect matching. ✓
- If |T| = 2k, prove by introduction on k.
 - **B**: k = 1, obviously holds
 - **H**: assume the property hold for all k < m
 - ▶ **I**: *k* = *m*
 - ▶ T is a tree ⇒ there must be at least one vertex $v \in T$ s.t. deg v = 1. Assume $(u, v) \in T.E$. If T has a perfect matching M, $(u, v) \in M$
 - ▶ $T \{u, v\}$ would generate a set of component $\{T_1, T_2, ..., T_x\}$ $(x \ge 1)$
 - ▶ If the order of any T_i is odd, then T has no perfect matching. ✓
 - Otherwise, each T_i has even order. And by **H**, we could find **exactly one** perfect matching M_i for each T_i .
 - ▶ Then $\{(u, v)\} + \bigcup_{i=1}^{n} M_i$ is one and the only one perfect matching of T.

Prove that every tree has at most one perfect matching.

- ▶ If |T| = 2k + 1, there is no perfect matching. ✓
- If |T| = 2k, prove by introduction on k.
 - **B**: k = 1, obviously holds
 - **H**: assume the property hold for all k < m
 - ▶ **I**: *k* = *m*
 - ▶ T is a tree ⇒ there must be at least one vertex $v \in T$ s.t. deg v = 1. Assume $(u, v) \in T.E$. If T has a perfect matching M, $(u, v) \in M$
 - ▶ $T \{u, v\}$ would generate a set of component $\{T_1, T_2, ..., T_x\}$ $(x \ge 1)$
 - ▶ If the order of any T_i is odd, then T has no perfect matching. ✓
 - Otherwise, each T_i has even order. And by **H**, we could find **exactly one** perfect matching M_i for each T_i .
 - ▶ Then $\{(u, v)\} + \bigcup_{i=1} M_i$ is one and the only one perfect matching of T. ✓

Jun Ma (majun@nju.edu.cn)

3-12 Matching & Covers

December 10, 2020

-

4/16

⇒.

• Let M be a perfect matching of G, then n is even and $\alpha'(G) = |M| = n/2$

► So
$$\beta'(G) = n - \alpha'(G) = n/2 = |M|$$

Jun Ma (majun@nju.edu.cn)

6/16

⇐.

- As, $\alpha'(G) + \beta'(G) = n$, and $\alpha'(G) = \beta'(G)$
- ▶ *n* is even and $\alpha'(G) = \beta'(G) = n/2$
- There is an independent edge set (Matching) M consisting of n/2 edges, which must be a perfect matching.

6/16

- **A B A B A B A**

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\beta(G) \ge \frac{n}{\Delta + 1}$$

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\beta(G) \ge \frac{n}{\Delta + 1}$$

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\beta(G) \ge \frac{n}{\Delta + 1}$$

Proof.

▶ Assume $\beta(G) < \frac{n}{\Delta+1}$, and X be one minimum cover.

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\beta(G) \ge \frac{n}{\Delta + 1}$$

- ► Assume $\beta(G) < \frac{n}{\Delta+1}$, and X be one minimum cover.
- ► As one vertex $v \in G.V$ could cover at most $\Delta + 1$ vertices (including itself), X could cover at most $|X| \cdot (\Delta + 1)$ vertices, where

$$|X| \cdot (\Delta + 1) = \beta(G) \cdot (\Delta + 1) < n.$$

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\beta(G) \ge \frac{n}{\Delta + 1}$$

- ► Assume $\beta(G) < \frac{n}{\Delta+1}$, and X be one minimum cover.
- ► As one vertex $v \in G.V$ could cover at most $\Delta + 1$ vertices (including itself), X could cover at most $|X| \cdot (\Delta + 1)$ vertices, where

$$|X| \cdot (\Delta + 1) = \beta(G) \cdot (\Delta + 1) < n.$$
 Conflicting!

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\beta(G) \ge \frac{n}{\Delta + 1}$$

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\beta(G) \ge \frac{n}{\Delta + 1}$$

Proof.

• Let C be a vertex cover of G

$$\blacktriangleright |N(C)| \le |C| \cdot \Delta$$

$$\blacktriangleright |N(C)| = n - |C|$$

- $\blacktriangleright \ n |C| \le |C| \cdot \Delta$
- ► So, $|C| \ge \frac{n}{\Delta + 1}$
- ▶ Finally, $\beta(G) \ge \frac{n}{\Delta+1}$

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\alpha(G) \ge \frac{n}{\Delta + 1}$$

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\alpha(G) \ge \frac{n}{\Delta + 1}$$

Proof.

By Construction

Jun Ma (majun@nju.edu.cn)

3-12 Matching & Covers

December 10, 2020 9 / 16

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\alpha(G) \ge \frac{n}{\Delta + 1}$$

Proof.

By Construction To construct an independent set S with $|S| \ge \frac{n}{\Delta + 1}$

3-12 Matching & Covers

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$\alpha(G) \ge \frac{n}{\Delta + 1}$$

Proof.

By Construction

To construct an independent set S with $|S| \geq \frac{n}{\Delta+1}$

- 1: while |V(G) > 0| do
- 2: Choose $v \in V(G)$

3:
$$S \leftarrow S \cup \{v\}$$

4:
$$G \leftarrow G - \{v\} - N(v)$$

Give an example of a 5-regular graph that contains no 1-factor.

3-12 Matching & Covers

3 1 4 3 1 December 10, 2020

3

10/16

$\mathrm{CZ}~8.18$

Give an example of a 5-regular graph that contains no 1-factor.

 $https://math.stackexchange.com/questions/520203/k-regular-simple-graph-without-1-factor_started started star$

3-12 Matching & Covers

Use Tutte's characterization of graphs with 1-factors (Theorem 8.10) to show that $K_{3,5}$ does not have a 1-factor.

Theorem 8.10 A graph G contains a 1-factor if and only if $k_o(G - S) \leq |S|$ for every proper subset S of V(G).

Use Tutte's characterization of graphs with 1-factors (Theorem 8.10) to show that $K_{3,5}$ does not have a 1-factor.

Theorem 8.10 A graph G contains a 1-factor if and only if $k_o(G - S) \le |S|$ for every proper subset S of V(G).

$$k_o(G-S) = 5 > 3 = |S|$$

Show that every 3-regular bridgeless graph contains a 2-factor.

æ

12/16

Show that every 3-regular bridgeless graph contains a 2-factor.

Step-1: Show that every 3-regular bridgeless graph contains a **1-factor**, F.

₩

Step-2: Show that G - F is a 2-factor.

Jun Ma (majun@nju.edu.cn)

3-12 Matching & Covers

December 10, 2020

3 × 4 3 ×

CZ 8.24

Step-1

Show that every 3-regular bridgeless graph contains a 1-factor.

Theorem (Petersen's theorem)

Every cubic, bridgeless graph contains a perfect matching.

Petersen Graph

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Jun Ma (majun@nju.edu.cn)

3-12 Matching & Covers

December 10, 2020

3 N K 3 N

æ

Basic Idea

- ▶ For every cubic, bridgeless graph G = (V, E) we have that for every set $U \subset V$, $k_o(G U) \leq |U|$.
- ▶ Then by Tutte's theorem, G contains a perfect matching.

14/16

・ロト ・ 同ト ・ ヨト ・ ヨト

Proof

- \blacktriangleright G_i, V_i, m_i
 - G_i : a component with an **odd** number of vertices in the graph induced by the vertex set V U.
 - \triangleright V_i : the vertices of G_i
 - m_i : the number of edges with one vertex in V_i and one vertex in U.

Proof

- \blacktriangleright G_i, V_i, m_i
 - G_i : a component with an **odd** number of vertices in the graph induced by the vertex set V U.
 - \triangleright V_i : the vertices of G_i
 - m_i : the number of edges with one vertex in V_i and one vertex in U.

▶ Then we have

$$\sum_{v \in V_i} \deg_G v = 2|E_i| + m_i$$

 \blacktriangleright E_i : the set of edges of G_i with both vertices in V_i

Proof

- \blacktriangleright G_i, V_i, m_i
 - G_i : a component with an **odd** number of vertices in the graph induced by the vertex set V U.
 - \blacktriangleright V_i : the vertices of G_i
 - m_i : the number of edges with one vertex in V_i and one vertex in U.

▶ Then we have

$$\sum_{v \in V_i} \deg_G v = 2|E_i| + m_i$$

• E_i : the set of edges of G_i with both vertices in V_i

$$\sum_{v \in V_i} \deg_G v = 3|V_i| \text{ which is odd}$$

Proof

- \blacktriangleright G_i, V_i, m_i
 - G_i : a component with an **odd** number of vertices in the graph induced by the vertex set V U.
 - \triangleright V_i : the vertices of G_i
 - m_i : the number of edges with one vertex in V_i and one vertex in U.

▶ Then we have

$$\sum_{v \in V_i} \deg_G v = 2|E_i| + m_i$$

• E_i : the set of edges of G_i with both vertices in V_i

$$\sum_{v \in V_i} \deg_G v = 3|V_i| \text{ which is odd}$$

• m_i must be **odd**, and $m_i \ge 3$ (as G is bridgeless)

▶ m: the number of edges in G with one vertex in U and one vertex in the graph induced by V - U.

- ▶ m: the number of edges in G with one vertex in U and one vertex in the graph induced by V U.
- Every component with an odd number of vertices contributes at least 3 edges to m

- ▶ m: the number of edges in G with one vertex in U and one vertex in the graph induced by V U.
- Every component with an odd number of vertices contributes at least 3 edges to m
- ► So, $k_o(G V) \le m/3$.

- ▶ m: the number of edges in G with one vertex in U and one vertex in the graph induced by V U.
- Every component with an odd number of vertices contributes at least 3 edges to m
- ► So, $k_o(G V) \le m/3$.
- ▶ In the worst case, every edge with one vertex in U contributes to m, and therefore $m \leq 3|U|$

- ▶ m: the number of edges in G with one vertex in U and one vertex in the graph induced by V U.
- Every component with an odd number of vertices contributes at least 3 edges to m
- ► So, $k_o(G V) \le m/3$.
- ▶ In the worst case, every edge with one vertex in U contributes to m, and therefore $m \leq 3|U|$
- So, $|U| \ge m/3 \ge k_o(G-V)$

Jun Ma (majun@nju.edu.cn)

- ▶ m: the number of edges in G with one vertex in U and one vertex in the graph induced by V U.
- Every component with an odd number of vertices contributes at least 3 edges to m
- ► So, $k_o(G V) \le m/3$.
- ▶ In the worst case, every edge with one vertex in U contributes to m, and therefore $m \leq 3|U|$
- So, $|U| \ge m/3 \ge k_o(G-V)$
- By Tutte theorem, G has a 1-factor.

4 B 6 4 B 6

Thank You!

Jun Ma (majun@nju.edu.cn)

3-12 Matching & Covers