3-12 Matching \& Covers

Jun Ma

majun@nju.edu.cn
December 10, 2020

CZ 8.3

CZ 8.3

Figure 8.5 shows two bipartite graphs G_{1} and G_{2}, each with partite sets $U=\{v, w, x, y, z\}$ and $W=\{a, b, c, d, e\}$. In each case, can U be matched to W ?

Figure 8.5: The graphs G_{1} and G_{2} in Exercise 8.3

CZ 8.3

Figure 8.5 shows two bipartite graphs G_{1} and G_{2}, each with partite sets $U=\{v, w, x, y, z\}$ and $W=\{a, b, c, d, e\}$. In each case, can U be matched to W ?

Figure 8.5: The graphs G_{1} and G_{2} in Exercise 8.3

CZ 8.3

Figure 8.5 shows two bipartite graphs G_{1} and G_{2}, each with partite sets $U=\{v, w, x, y, z\}$ and $W=\{a, b, c, d, e\}$. In each case, can U be matched to W ?

Figure 8.5: The graphs G_{1} and G_{2} in Exercise 8.3

CZ 8.3

Figure 8.5 shows two bipartite graphs G_{1} and G_{2}, each with partite sets $U=\{v, w, x, y, z\}$ and $W=\{a, b, c, d, e\}$. In each case, can U be matched to W ?

Figure 8.5: The graphs G_{1} and G_{2} in Exercise 8.3

CZ 8.5

Prove that every tree has at most one perfect matching.

CZ 8.5

Prove that every tree has at most one perfect matching.
Proof.

- If $|T|=2 k+1$, there is no perfect matching.

CZ 8.5

Prove that every tree has at most one perfect matching.
Proof.

- If $|T|=2 k+1$, there is no perfect matching.

CZ 8.5

Prove that every tree has at most one perfect matching.

Proof.

- If $|T|=2 k+1$, there is no perfect matching.
- If $|T|=2 k$, prove by introduction on k.
- B: $k=1$, obviously holds
- H: assume the property hold for all $k<m$
- $\mathbf{I}: k=m$

CZ 8.5

Prove that every tree has at most one perfect matching.

Proof.

- If $|T|=2 k+1$, there is no perfect matching.
- If $|T|=2 k$, prove by introduction on k.
- B: $k=1$, obviously holds
- H: assume the property hold for all $k<m$
- $\mathbf{I}: k=m$

CZ 8.5

Prove that every tree has at most one perfect matching.
Proof.

- If $|T|=2 k+1$, there is no perfect matching.
- If $|T|=2 k$, prove by introduction on k.
- B: $k=1$, obviously holds
- H: assume the property hold for all $k<m$
- I: $k=m$
- T is a tree \Rightarrow there must be at least one vertex $v \in T$ s.t. $\operatorname{deg} v=1$. Assume $(u, v) \in T$.E. If T has a perfect matching $M,(u, v) \in M$

CZ 8.5

Prove that every tree has at most one perfect matching.
Proof.

- If $|T|=2 k+1$, there is no perfect matching.
- If $|T|=2 k$, prove by introduction on k.
- B: $k=1$, obviously holds
- H: assume the property hold for all $k<m$
- $\mathbf{I}: k=m$
- T is a tree \Rightarrow there must be at least one vertex $v \in T$ s.t. $\operatorname{deg} v=1$. Assume $(u, v) \in T$.E. If T has a perfect matching $M,(u, v) \in M$
- $T-\{u, v\}$ would generate a set of component $\left\{T_{1}, T_{2}, \ldots, T_{x}\right\}(x \geq 1)$

CZ 8.5

Prove that every tree has at most one perfect matching.
Proof.

- If $|T|=2 k+1$, there is no perfect matching.
- If $|T|=2 k$, prove by introduction on k.
- B: $k=1$, obviously holds
- H: assume the property hold for all $k<m$
- $\mathbf{I}: k=m$
- T is a tree \Rightarrow there must be at least one vertex $v \in T$ s.t. $\operatorname{deg} v=1$. Assume $(u, v) \in T$.E. If T has a perfect matching $M,(u, v) \in M$
- $T-\{u, v\}$ would generate a set of component $\left\{T_{1}, T_{2}, \ldots, T_{x}\right\}(x \geq 1)$
- If the order of any T_{i} is odd, then T has no perfect matching.

CZ 8.5

Prove that every tree has at most one perfect matching.
Proof.

- If $|T|=2 k+1$, there is no perfect matching.
- If $|T|=2 k$, prove by introduction on k.
- B: $k=1$, obviously holds
- H: assume the property hold for all $k<m$
- $\mathbf{I}: k=m$
- T is a tree \Rightarrow there must be at least one vertex $v \in T$ s.t. $\operatorname{deg} v=1$. Assume $(u, v) \in T$.E. If T has a perfect matching $M,(u, v) \in M$
- $T-\{u, v\}$ would generate a set of component $\left\{T_{1}, T_{2}, \ldots, T_{x}\right\}(x \geq 1)$
- If the order of any T_{i} is odd, then T has no perfect matching.

CZ 8.5

Prove that every tree has at most one perfect matching.

Proof.

- If $|T|=2 k+1$, there is no perfect matching.
- If $|T|=2 k$, prove by introduction on k.
- B: $k=1$, obviously holds
- H: assume the property hold for all $k<m$
- I: $k=m$
- T is a tree \Rightarrow there must be at least one vertex $v \in T$ s.t. $\operatorname{deg} v=1$. Assume $(u, v) \in T$.E. If T has a perfect matching $M,(u, v) \in M$
- $T-\{u, v\}$ would generate a set of component $\left\{T_{1}, T_{2}, \ldots, T_{x}\right\}(x \geq 1)$
- If the order of any T_{i} is odd, then T has no perfect matching.
- Otherwise, each T_{i} has even order. And by \mathbf{H}, we could find exactly one perfect matching M_{i} for each T_{i}.

CZ 8.5

Prove that every tree has at most one perfect matching.

Proof.

- If $|T|=2 k+1$, there is no perfect matching.
- If $|T|=2 k$, prove by introduction on k.
- B: $k=1$, obviously holds
- H: assume the property hold for all $k<m$
- I: $k=m$
- T is a tree \Rightarrow there must be at least one vertex $v \in T$ s.t. $\operatorname{deg} v=1$. Assume $(u, v) \in T$.E. If T has a perfect matching $M,(u, v) \in M$
- $T-\{u, v\}$ would generate a set of component $\left\{T_{1}, T_{2}, \ldots, T_{x}\right\}(x \geq 1)$
- If the order of any T_{i} is odd, then T has no perfect matching.
- Otherwise, each T_{i} has even order. And by \mathbf{H}, we could find exactly one perfect matching M_{i} for each T_{i}.
- Then $\{(u, v)\}+\bigcup_{i=1}^{x} M_{i}$ is one and the only one perfect matching of T.

CZ 8.5

Prove that every tree has at most one perfect matching.

Proof.

- If $|T|=2 k+1$, there is no perfect matching.
- If $|T|=2 k$, prove by introduction on k.
- B: $k=1$, obviously holds
- H: assume the property hold for all $k<m$
- I: $k=m$
- T is a tree \Rightarrow there must be at least one vertex $v \in T$ s.t. $\operatorname{deg} v=1$. Assume $(u, v) \in T$.E. If T has a perfect matching $M,(u, v) \in M$
- $T-\{u, v\}$ would generate a set of component $\left\{T_{1}, T_{2}, \ldots, T_{x}\right\}(x \geq 1)$
- If the order of any T_{i} is odd, then T has no perfect matching.
- Otherwise, each T_{i} has even order. And by \mathbf{H}, we could find exactly one perfect matching M_{i} for each T_{i}.
- Then $\{(u, v)\}+\bigcup_{i=1}^{x} M_{i}$ is one and the only one perfect matching of T.

Prove that a graph G without isolated vertices has a perfect matching if and only if $\alpha^{\prime}(G)=\beta^{\prime}(G)$.

CZ 8.14

Prove that a graph G without isolated vertices has a perfect matching if and only if $\alpha^{\prime}(G)=\beta^{\prime}(G)$.

CZ 8.14

Prove that a graph G without isolated vertices has a perfect matching if and only if $\alpha^{\prime}(G)=\beta^{\prime}(G)$.
\Rightarrow.

- Let M be a perfect matching of G, then n is even and $\alpha^{\prime}(G)=|M|=n / 2$
- So $\beta^{\prime}(G)=n-\alpha^{\prime}(G)=n / 2=|M|$

CZ 8.14

Prove that a graph G without isolated vertices has a perfect matching if and only if $\alpha^{\prime}(G)=\beta^{\prime}(G)$.

Prove that a graph G without isolated vertices has a perfect matching if and only if $\alpha^{\prime}(G)=\beta^{\prime}(G)$.
\Leftarrow.

- As, $\alpha^{\prime}(G)+\beta^{\prime}(G)=n$, and $\alpha^{\prime}(G)=\beta^{\prime}(G)$
- n is even and $\alpha^{\prime}(G)=\beta^{\prime}(G)=n / 2$
- There is an independent edge set (Matching) M consisting of $n / 2$ edges, which must be a perfect matching.

CZ 8.16

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$
\beta(G) \geq \frac{n}{\Delta+1}
$$

CZ 8.16

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$
\beta(G) \geq \frac{n}{\Delta+1}
$$

Proof.

CZ 8.16

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$
\beta(G) \geq \frac{n}{\Delta+1}
$$

Proof.

- Assume $\beta(G)<\frac{n}{\Delta+1}$, and X be one minimum cover.

CZ 8.16

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$
\beta(G) \geq \frac{n}{\Delta+1}
$$

Proof.

- Assume $\beta(G)<\frac{n}{\Delta+1}$, and X be one minimum cover.
- As one vertex $v \in G . V$ could cover at most $\Delta+1$ vertices (including itself), X could cover at most $|X| \cdot(\Delta+1)$ vertices, where

$$
|X| \cdot(\Delta+1)=\beta(G) \cdot(\Delta+1)<n
$$

CZ 8.16

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$
\beta(G) \geq \frac{n}{\Delta+1}
$$

Proof.

- Assume $\beta(G)<\frac{n}{\Delta+1}$, and X be one minimum cover.
- As one vertex $v \in G . V$ could cover at most $\Delta+1$ vertices (including itself), X could cover at most $|X| \cdot(\Delta+1)$ vertices, where

$$
|X| \cdot(\Delta+1)=\beta(G) \cdot(\Delta+1)<n . \text { Conflicting! }
$$

CZ 8.16

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$
\beta(G) \geq \frac{n}{\Delta+1}
$$

CZ 8.16

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$
\beta(G) \geq \frac{n}{\Delta+1}
$$

Proof.

- Let C be a vertex cover of G
- $|N(C)| \leq|C| \cdot \Delta$
- $|N(C)|=n-|C|$
- $n-|C| \leq|C| \cdot \Delta$
- So, $|C| \geq \frac{n}{\Delta+1}$
- Finally, $\beta(G) \geq \frac{n}{\Delta+1}$

How about $\alpha(G)$

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$
\alpha(G) \geq \frac{n}{\Delta+1}
$$

How about $\alpha(G)$

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$
\alpha(G) \geq \frac{n}{\Delta+1}
$$

Proof.
By Construction

How about $\alpha(G)$

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$
\alpha(G) \geq \frac{n}{\Delta+1}
$$

Proof.
By Construction
To construct an independent set S with $|S| \geq \frac{n}{\Delta+1}$

How about $\alpha(G)$

Prove that if G is a graph of order n, maximum degree Δ and having no isolated vertices, then

$$
\alpha(G) \geq \frac{n}{\Delta+1}
$$

Proof.
By Construction
To construct an independent set S with $|S| \geq \frac{n}{\Delta+1}$

1:	while $\|V(G)>0\|$ do
2:	Choose $v \in V(G)$
3:	$S \leftarrow S \cup\{v\}$
4:	$G \leftarrow G-\{v\}-N(v)$

CZ 8.18

Give an example of a 5 -regular graph that contains no 1-factor.

CZ 8.18

Give an example of a 5 -regular graph that contains no 1-factor.

https://math.stackexchange.com/questions/520203/k-regular-simple-graph-without-1-factor

CZ 8.21

Use Tutte's characterization of graphs with 1-factors (Theorem 8.10) to show that $K_{3,5}$ does not have a 1 -factor.

Theorem 8.10 A graph G contains a 1-factor if and only if $k_{o}(G-S) \leq|S|$ for every proper subset S of $V(G)$.

CZ 8.21

Use Tutte's characterization of graphs with 1-factors (Theorem 8.10) to show that $K_{3,5}$ does not have a 1-factor.

Theorem 8.10 A graph G contains a 1 -factor if and only if $k_{o}(G-S) \leq|S|$ for every proper subset S of $V(G)$.

$$
k_{o}(G-S)=5>3=|S|
$$

CZ 8.24

Show that every 3 -regular bridgeless graph contains a 2 -factor.

CZ 8.24

Show that every 3-regular bridgeless graph contains a 2 -factor.

> Step-1: Show that every 3-regular bridgeless graph contains a 1-factor, F.

Step-2: Show that $G-F$ is a 2 -factor.

CZ 8.24

Step-1

Show that every 3 -regular bridgeless graph contains a 1 -factor.

Theorem (Petersen's theorem)
Every cubic, bridgeless graph contains a perfect matching.

Proof of Petersen's Theorem

Basic Idea

- For every cubic, bridgeless graph $G=(V, E)$ we have that for every set $U \subset V, k_{o}(G-U) \leq|U|$.
- Then by Tutte's theorem, G contains a perfect matching.

Proof of Petersen's Theorem

Proof

- G_{i}, V_{i}, m_{i}
- G_{i} : a component with an odd number of vertices in the graph induced by the vertex set $V-U$.
- V_{i} : the vertices of G_{i}
- m_{i} : the number of edges with one vertex in V_{i} and one vertex in U.

Proof of Petersen's Theorem

Proof

- G_{i}, V_{i}, m_{i}
- G_{i} : a component with an odd number of vertices in the graph induced by the vertex set $V-U$.
- V_{i} : the vertices of G_{i}
- m_{i} : the number of edges with one vertex in V_{i} and one vertex in U.
- Then we have

$$
\sum_{v \in V_{i}} \operatorname{deg}_{G} v=2\left|E_{i}\right|+m_{i}
$$

- E_{i} : the set of edges of G_{i} with both vertices in V_{i}

Proof of Petersen's Theorem

Proof

- G_{i}, V_{i}, m_{i}
- G_{i} : a component with an odd number of vertices in the graph induced by the vertex set $V-U$.
- V_{i} : the vertices of G_{i}
- m_{i} : the number of edges with one vertex in V_{i} and one vertex in U.
- Then we have

$$
\sum_{v \in V_{i}} \operatorname{deg}_{G} v=2\left|E_{i}\right|+m_{i}
$$

- E_{i} : the set of edges of G_{i} with both vertices in V_{i}

$$
\sum_{v \in V_{i}} \operatorname{deg}_{G} v=3\left|V_{i}\right| \text { which is odd }
$$

Proof of Petersen's Theorem

Proof

- G_{i}, V_{i}, m_{i}
- G_{i} : a component with an odd number of vertices in the graph induced by the vertex set $V-U$.
- V_{i} : the vertices of G_{i}
- m_{i} : the number of edges with one vertex in V_{i} and one vertex in U.
- Then we have

$$
\sum_{v \in V_{i}} \operatorname{deg}_{G} v=2\left|E_{i}\right|+m_{i}
$$

- E_{i} : the set of edges of G_{i} with both vertices in V_{i}

$$
\sum_{v \in V_{i}} \operatorname{deg}_{G} v=3\left|V_{i}\right| \text { which is odd }
$$

- m_{i} must be odd, and $m_{i} \geq 3$ (as G is bridgeless)

Proof of Petersen's Theorem (cont'd)

- m: the number of edges in G with one vertex in U and one vertex in the graph induced by $V-U$.

Proof of Petersen's Theorem (cont'd)

- m: the number of edges in G with one vertex in U and one vertex in the graph induced by $V-U$.
- Every component with an odd number of vertices contributes at least 3 edges to m

Proof of Petersen's Theorem (cont'd)

- m: the number of edges in G with one vertex in U and one vertex in the graph induced by $V-U$.
- Every component with an odd number of vertices contributes at least 3 edges to m
- So, $k_{o}(G-V) \leq m / 3$.

Proof of Petersen's Theorem (cont'd)

- m: the number of edges in G with one vertex in U and one vertex in the graph induced by $V-U$.
- Every component with an odd number of vertices contributes at least 3 edges to m
- So, $k_{o}(G-V) \leq m / 3$.
- In the worst case, every edge with one vertex in U contributes to m, and therefore $m \leq 3|U|$

Proof of Petersen's Theorem (cont'd)

- m: the number of edges in G with one vertex in U and one vertex in the graph induced by $V-U$.
- Every component with an odd number of vertices contributes at least 3 edges to m
- So, $k_{o}(G-V) \leq m / 3$.
- In the worst case, every edge with one vertex in U contributes to m, and therefore $m \leq 3|U|$
- So, $|U| \geq m / 3 \geq k_{o}(G-V)$

Proof of Petersen's Theorem (cont'd)

- m: the number of edges in G with one vertex in U and one vertex in the graph induced by $V-U$.
- Every component with an odd number of vertices contributes at least 3 edges to m
- So, $k_{o}(G-V) \leq m / 3$.
- In the worst case, every edge with one vertex in U contributes to m, and therefore $m \leq 3|U|$
- So, $|U| \geq m / 3 \geq k_{o}(G-V)$
- By Tutte theorem, G has a 1 -factor.

Thank You!

