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CZ 8.5

Prove that every tree has at most one perfect matching.

Proof.
I If |T | = 2k + 1, there is no perfect matching. 3

I If |T | = 2k, prove by introduction on k.
I B: k = 1, obviously holds
I H: assume the property hold for all k < m
I I: k = m

I T is a tree ⇒ there must be at least one vertex v ∈ T s.t. deg v = 1.
Assume (u, v) ∈ T.E. If T has a perfect matching M , (u, v) ∈ M

I T − {u, v} would generate a set of component {T1, T2, ..., Tx} (x ≥ 1)
I If the order of any Ti is odd, then T has no perfect matching. 3
I Otherwise, each Ti has even order. And by H, we could find

exactly one perfect matching Mi for each Ti.
I Then {(u, v)} +

x∪
i=1

Mi is one and the only one perfect matching of

T . 3
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I Otherwise, each Ti has even order. And by H, we could find
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CZ 8.5

Prove that every tree has at most one perfect matching.

Proof.
I If |T | = 2k + 1, there is no perfect matching. 3

I If |T | = 2k, prove by introduction on k.
I B: k = 1, obviously holds
I H: assume the property hold for all k < m
I I: k = m

I T is a tree ⇒ there must be at least one vertex v ∈ T s.t. deg v = 1.
Assume (u, v) ∈ T.E. If T has a perfect matching M , (u, v) ∈ M

I T − {u, v} would generate a set of component {T1, T2, ..., Tx} (x ≥ 1)
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I Otherwise, each Ti has even order. And by H, we could find

exactly one perfect matching Mi for each Ti.
I Then {(u, v)} +

x∪
i=1

Mi is one and the only one perfect matching of

T .

3
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CZ 8.14

Prove that a graph G without isolated vertices has a perfect matching
if and only if α′(G) = β′(G).
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CZ 8.14

Prove that a graph G without isolated vertices has a perfect matching
if and only if α′(G) = β′(G).

⇒.
I Let M be a perfect matching of G, then n is even and

α′(G) = |M | = n/2
I So β′(G) = n − α′(G) = n/2 = |M |
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CZ 8.14

Prove that a graph G without isolated vertices has a perfect matching
if and only if α′(G) = β′(G).

⇐.
I As, α′(G) + β′(G) = n, and α′(G) = β′(G)
I n is even and α′(G) = β′(G) = n/2
I There is an independent edge set (Matching) M consisting of n/2

edges, which must be a perfect matching.
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CZ 8.16

Prove that if G is a graph of order n, maximum degree ∆ and having
no isolated vertices, then

β(G) ≥ n

∆ + 1

Proof.
I Assume β(G) < n

∆+1 , and X be one minimum cover.
I As one vertex v ∈ G.V could cover at most ∆ + 1 vertices

(including itself), X could cover at most |X| · (∆ + 1) vertices,
where

|X| · (∆ + 1) = β(G) · (∆ + 1) < n. Conflicting!
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(including itself), X could cover at most |X| · (∆ + 1) vertices,
where

|X| · (∆ + 1) = β(G) · (∆ + 1) < n. Conflicting!
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CZ 8.16

Prove that if G is a graph of order n, maximum degree ∆ and having
no isolated vertices, then

β(G) ≥ n

∆ + 1

Proof.
I Let C be a vertex cover of G

I |N(C)| ≤ |C| · ∆
I |N(C)| = n − |C|
I n − |C| ≤ |C| · ∆
I So, |C| ≥ n

∆+1
I Finally, β(G) ≥ n

∆+1
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CZ 8.16

Prove that if G is a graph of order n, maximum degree ∆ and having
no isolated vertices, then

β(G) ≥ n

∆ + 1

Proof.
I Let C be a vertex cover of G

I |N(C)| ≤ |C| · ∆
I |N(C)| = n − |C|
I n − |C| ≤ |C| · ∆
I So, |C| ≥ n

∆+1
I Finally, β(G) ≥ n

∆+1
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How about α(G)

Prove that if G is a graph of order n, maximum degree ∆ and having
no isolated vertices, then

α(G) ≥ n

∆ + 1

Proof.
By Construction

To construct an independent set S with |S| ≥ n
∆+1
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How about α(G)

Prove that if G is a graph of order n, maximum degree ∆ and having
no isolated vertices, then

α(G) ≥ n

∆ + 1

Proof.
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∆+1
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How about α(G)

Prove that if G is a graph of order n, maximum degree ∆ and having
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How about α(G)

Prove that if G is a graph of order n, maximum degree ∆ and having
no isolated vertices, then

α(G) ≥ n

∆ + 1

Proof.
By Construction

To construct an independent set S with |S| ≥ n
∆+1
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CZ 8.18

Give an example of a 5-regular graph that contains no 1-factor.

https://math.stackexchange.com/questions/520203/k-regular-simple-graph-without-1-factor
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Give an example of a 5-regular graph that contains no 1-factor.
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CZ 8.21

Use Tutte’s characterization of graphs with 1-factors ( Theorem 8.10)
to show that K3,5 does not have a 1-factor.

S

G − S

ko(G − S) = 5 > 3 = |S|
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CZ 8.21

Use Tutte’s characterization of graphs with 1-factors ( Theorem 8.10)
to show that K3,5 does not have a 1-factor.
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CZ 8.24

Show that every 3-regular bridgeless graph contains a 2-factor.

Step-1: Show that every 3-regular
bridgeless graph contains a 1-factor,
F .

⇓

Step-2: Show that G − F is a 2-factor.
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CZ 8.24

Show that every 3-regular bridgeless graph contains a 2-factor.

Step-1: Show that every 3-regular
bridgeless graph contains a 1-factor,
F .

⇓

Step-2: Show that G − F is a 2-factor.
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CZ 8.24

Step-1
Show that every 3-regular bridgeless graph contains a 1-factor.

Theorem (Petersen’s theorem)
Every cubic, bridgeless graph contains a perfect matching.

Julius Petersen
(1839 - 1910)

Petersen
Graph
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Proof of Petersen’s Theorem

Basic Idea
I For every cubic, bridgeless graph G = (V, E) we have that for

every set U ⊂ V , ko(G − U) ≤ |U |.
I Then by Tutte’s theorem, G contains a perfect matching.

Jun Ma (majun@nju.edu.cn) 3-12 Matching & Covers December 10, 2020 14 / 16



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof of Petersen’s Theorem

Proof
I Gi,Vi, mi

I Gi: a component with an odd number of vertices in the graph
induced by the vertex set V − U .

I Vi: the vertices of Gi

I mi: the number of edges with one vertex in Vi and one vertex in U .

I Then we have ∑
v∈Vi

degG v = 2|Ei| + mi

I Ei : the set of edges of Gi with both vertices in Vi

I ∑
v∈Vi

degG v = 3|Vi| which is odd

I mi must be odd, and mi ≥ 3 (as G is bridgeless)
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I Then we have ∑

v∈Vi

degG v = 2|Ei| + mi
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Proof
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I Gi: a component with an odd number of vertices in the graph
induced by the vertex set V − U .

I Vi: the vertices of Gi

I mi: the number of edges with one vertex in Vi and one vertex in U .
I Then we have ∑

v∈Vi

degG v = 2|Ei| + mi

I Ei : the set of edges of Gi with both vertices in Vi

I ∑
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Proof of Petersen’s Theorem

Proof
I Gi,Vi, mi

I Gi: a component with an odd number of vertices in the graph
induced by the vertex set V − U .

I Vi: the vertices of Gi

I mi: the number of edges with one vertex in Vi and one vertex in U .
I Then we have ∑

v∈Vi

degG v = 2|Ei| + mi

I Ei : the set of edges of Gi with both vertices in Vi

I ∑
v∈Vi

degG v = 3|Vi| which is odd

I mi must be odd, and mi ≥ 3 (as G is bridgeless)
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Proof of Petersen’s Theorem (cont’d)

I m: the number of edges in G with one vertex in U and one vertex
in the graph induced by V − U .

I Every component with an odd number of vertices contributes at
least 3 edges to m

I So, ko(G − V ) ≤ m/3.
I In the worst case, every edge with one vertex in U contributes to

m, and therefore m ≤ 3|U |
I So, |U | ≥ m/3 ≥ ko(G − V )
I By Tutte theorem, G has a 1-factor.
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Proof of Petersen’s Theorem (cont’d)

I m: the number of edges in G with one vertex in U and one vertex
in the graph induced by V − U .

I Every component with an odd number of vertices contributes at
least 3 edges to m

I So, ko(G − V ) ≤ m/3.
I In the worst case, every edge with one vertex in U contributes to

m, and therefore m ≤ 3|U |
I So, |U | ≥ m/3 ≥ ko(G − V )
I By Tutte theorem, G has a 1-factor.
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Proof of Petersen’s Theorem (cont’d)

I m: the number of edges in G with one vertex in U and one vertex
in the graph induced by V − U .

I Every component with an odd number of vertices contributes at
least 3 edges to m

I So, ko(G − V ) ≤ m/3.

I In the worst case, every edge with one vertex in U contributes to
m, and therefore m ≤ 3|U |

I So, |U | ≥ m/3 ≥ ko(G − V )
I By Tutte theorem, G has a 1-factor.

Jun Ma (majun@nju.edu.cn) 3-12 Matching & Covers December 10, 2020 16 / 16



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof of Petersen’s Theorem (cont’d)

I m: the number of edges in G with one vertex in U and one vertex
in the graph induced by V − U .

I Every component with an odd number of vertices contributes at
least 3 edges to m

I So, ko(G − V ) ≤ m/3.
I In the worst case, every edge with one vertex in U contributes to

m, and therefore m ≤ 3|U |

I So, |U | ≥ m/3 ≥ ko(G − V )
I By Tutte theorem, G has a 1-factor.
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Proof of Petersen’s Theorem (cont’d)

I m: the number of edges in G with one vertex in U and one vertex
in the graph induced by V − U .

I Every component with an odd number of vertices contributes at
least 3 edges to m

I So, ko(G − V ) ≤ m/3.
I In the worst case, every edge with one vertex in U contributes to

m, and therefore m ≤ 3|U |
I So, |U | ≥ m/3 ≥ ko(G − V )

I By Tutte theorem, G has a 1-factor.
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Proof of Petersen’s Theorem (cont’d)

I m: the number of edges in G with one vertex in U and one vertex
in the graph induced by V − U .

I Every component with an odd number of vertices contributes at
least 3 edges to m

I So, ko(G − V ) ≤ m/3.
I In the worst case, every edge with one vertex in U contributes to

m, and therefore m ≤ 3|U |
I So, |U | ≥ m/3 ≥ ko(G − V )
I By Tutte theorem, G has a 1-factor.
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