
• ���	
– DH�2��1�2��



481� �,$�&+�
• �	! �,$�
��	7/�
.�* �,$�

• �-021 �,$��
– Direct sequencing
– Conditional branching
– Bounded iteration
– Conditional iteration (aka unbounded iteration)

• ����)�"���

• �* �,$�5��3#����-���6'%
�(����



"#1��������� (�)

• ���!� ��������
1. Find the minimum value in the list.
2. Swap it with the value in the first position.
3. Repeat the steps above for the remainder of the list 

(starting at the second position and advancing each 
time).

• ��
�������
• ����	�������

24

12

78

14

26

8

69

46




�

�

start����1

����start���min��

start++

start≥N?

YES

NO

24

12

78

14

26

8

69

46

min�i����start

i++

i>N?

YES

��i��	�
��min��?

NO

min����i
YES

NO



��

��

start�
��1

����start���min��

start++

start≥N?

YES

NO

24

12

78

14

26

8

69

46

min�i�
��start

i++

i>N?

YES

��i����
��min��?

NO

min�
��i
YES

NO

�	������
�����



��2���	

• �����	�
�����	��
�������



��

!�

start���#1

���#start��#min�


start++

start≥N?

YES

NO

24

12

78

14

26

8

69

46

min�i���#start

i++

i>N?

YES

�#i�
��
�#min�
?

NO

min���#i
YES

NO

�$	� ��
"�������
�� ���



�

��

start����1

����start���min��

start++

start≥N?

YES

NO

24

12

78

14

26

8

69

46

min�i����start

i++

i>N?

YES

��i����
��min��?

NO

min����i
YES

NO

�
��start
N
������	�
���min



��2�
�� (�)

• �
�����	�����



��2�
�� (�)

• �
�����	�����
– Subroutines can be very economical as far as the 

size of an algorithm is concerned.
– Subroutines not only shorten algorithms but also 

make them clear and well structured.
– All that the user of the subroutine has to know is 

what it does, but not how it does.
– Using subroutines, it is possible to develop a 

complex algorithm gradually step by step.



• ����������	����
���
– Advantages

• Decomposing a complex programming task into simpler steps: this is one of the two main tools 
of structured programming, along with data structures

• Reducing duplicate code within a program
• Enabling reuse of code across multiple programs
• Dividing a large programming task among various programmers, or various stages of a project
• Hiding implementation details from users of the subroutine
• Improving readability of code by replacing a block of code with a function call where a 

descriptive function name serves to describe the block of code. This makes the calling code 
concise and readable even if the function is not meant to be reused.

• Improving traceability (i.e. most languages offer ways to obtain the call trace which includes 
the names of the involved subroutines and perhaps even more information such as file names 
and line numbers); by not decomposing the code into subroutines, debugging would be 
severely impaired.

– Disadvantages
• Invoking a subroutine (versus using in-line code) imposes some computational overhead in the 

call mechanism. A subroutine typically requires standard housekeeping code – both at entry to, 
and exit from, the function (function prologue and epilogue – usually saving general purpose 
registers and return address as a minimum).

��2��� (�)



��3���

• ������
• 	���������
���



��3��� (�)

• ������������
��	�
– Calculate the factorial of a natural number
– Search a dictionary for a particular word
– Traverse a filesystem



��3��� (�)

• ��
��	������������
– Calculate the factorial of a natural number
– Search a dictionary for a particular word
– Traverse a filesystem



• Search a dictionary for a particular word
1. Set L to 0 and R to n − 1.

2. If L > R, the search terminates as unsuccessful.

3. Set m (the position of the middle element) to 
the floor of (L + R) / 2.

4. If Dm < T, set L to m + 1 and go to step 2.

5. If Dm > T, set R to m – 1 and go to step 2.

6. Now Dm = T, the search is done; return m.

��3��� (�)



• ���� ����"������!
�
��$�� ��

• �	�����"��� ������
���������

#%3� � (�)


