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To make precise what it means for two sets (even two infinite
sets) to have the same number of elements, we need a definition.
We say that a set A is equivalent to a set B if there exists a bijection
f:A— B.Wewrite A % B for A is equivalent to B. (Other authors

use the words equipotent or equinumerous.)
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. We say that a set
$is finite if either § = @ or if § is equivalent to the set {1,2,3, ..., n]
for some positive integer n.
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f + Z — N explicitly as follows:

=1~

“jét- FA” :
0,-1,1,-2,2,-3,3,-4,4,-5,5, ...

itx=10

~J

—(14 2x) otherwise
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TR HRE B (1)

f : Z — N explicitly as follows: . jé: .

W’zl 2x if x>0 R %8 & v& T case 3!
—(1+ 2x) otherwise )

Proof that  is one-to-one.

Let m, n € Z and suppose that f (1) = f(n)

Case 1. Suppose that m = 0 ‘and n = 0. Then f(m) = 2m and
f(n) = 2n. Thus E;ﬁ = 2n, and therefore m = n.

Case 2. Suppose that ﬂg/é./: Dand n < 0. Then f(m) = —2m — 1 and
fin) = —2n —1. Thus, —2m — 1 = —2n — 1, and therefore
m o= n. 7

Case 3. Suppu:rsmt’ﬁat one of the two, say m, is nonnegative, and the
other is negative. Then f(m) = 2Zm and f(n) = —2n — 1.
Thus 2Zm = —2n — 1. But this means that an even number,

2m, is equal to an odd number, —2n—1, which is impossible.

Therefore, if f{(m) = f(n), only case 1 and case 2 can occur. In
either of these cases, we have shown that m = n. Thus f is one-to-

One.
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f : Z — N explicitly as follows:
i 2x ifx>0
J() = l —(1+ 2x) otherwise

Proof that f maps Z onto [Y.
Let k € M. If k is even, then k = 2m for some m € Z with m = 0.

Thus, m € £ and f(m) = 2m = k. I k is odd, then k + 1 is even.
Hence m = (k4 1)/(—2) € £. Since k = 1, we have m < 0. Thus,
f(m)=—-2m—1=-2((k+1)/(—2)) — 1 = k. We conclude that for
all k € M, there exists m € Z such that f(m)=k.Since f : Z — N is
a well-defined function, f maps Z onto [. o
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Theorem 20.6.

Let A, B, C, and D be nonempty sets. Suppose that ANB=9, CND =
W A~C andB~D. Then AUB=~CUD.

Corollary 20.8.
Let A and B be disjoint sets. If A and B are finite, then A U B 1s finite

Theorem 20.10,
Let n be a positive integer. Then every subset of {1,2,3, ..., n} is finite.

Corollary 20.11.

Let 8 be a finite set. Then every subset of S is finite. & e —a) :
{1,2,3,...nt =&
Theorem 20.12. EEREtA
The union of two finite sets is finite. REERR ?
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[n its popular form, the principle says that if there are
more pigeons than holes, then at least one hole is the home of more than
One pigeon.

Theorem 21.2 (Pigeonhole principle).
Let m and n be positive integers with m > n, and let f be a map satisfyjing

f:{l,...,m}—={1,...,n}. Then f is not one-to-one.

The proof of the pigeonhole principle summarizes much of what
you learned: mathematical induction, proof in cases, and one-to-one

functions.
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Suppose to the contrary that I is finite. Since N # ¥ there exists an
integer m and a one-to-one mapping, g, of N onto {1,2,..., m}. Now
{1,2,...,m+1} € N, sowe may consider the restriction g|j1 2, m+1} :
{1,2,...,m+1} — {1, 2,..., m}. The pigeonhole principle (Theorem
21.2) implies that g|(; 2, _m+1) 1S n0t one-to-one. This, in turn, implies
(as you surely showed in Exercise 20.9) that g is not one-to-one,
contradicting our choice of g. Therefore, it must be the case that I
is infinite. H
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Theorem 21.6.
Let A be a nonempty finite set. There 18 a unique positive integer n such
that A~ {1,..., n}.
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An infinite set A is said to be countably infinite if A ~ N,
A set is countable if it is either finite or countably infinite.

a nonempty set A is countable if and only if there exists
a one-to-one functionf : A — N.
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Every subset of M is countable.
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[ see it but I do not believe it.—Georg Cantor}

We will begin by showing that Q* is countable. We define f : Q —
N x N as follows. Write each member of QT as p/qg where p,g > 0
and p/g is in reduced form; that is, p and g have no positive com-
mon factor other than 1. Now define f(p/q) = (p,q). Because p/q
is in reduced form, f is well-defined and one-to-one. Since M x [
is countable (Theorem 22.8), and f(Q7) is a subset of it, we know
from Corollary 22.4 that f(QQ7) is countable. Hence (7 is countable.
Now the set of negative rationals, @, is equivalent to Q%. Since
Q = QT uQ U{0}, and we have a finite union of countable sets, we
use Corollary 22.7 to conclude that (@ is countable. Since (@ is infinite
we know that it is countably infinite. L
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Cantor’s diagonalization argument

f[:].:] — ﬂ.ﬂllﬂ]2ﬂ13...

f[E] — D.ﬂ.gl ﬂggﬂg:i “ e a

f{gj = 0.y 03833 ...

f(n) = 0.y andys...an, ...
7?’}%‘ — b — ﬂ.hlhgh_j...
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oroblems: 20.4, 20.8-10;
oroblems: 21.7, 21.9-11, 21.16-19;
oropblems: 22.1-3, 22.6, 22.9
oroblems: 23.2-3, 23.10
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