“2014级--小班讨论 (第四学期)”的版本间的差异

来自问题求解
跳转至: 导航搜索
 
(未显示同一用户的2个中间版本)
第98行: 第98行:
 
   <li>随机优化算法。</li>
 
   <li>随机优化算法。</li>
 
   <li>随机算法的设计范式。</li>
 
   <li>随机算法的设计范式。</li>
 +
</ol>
 +
 +
=2016年5月18日=
 +
[[媒体文件:小班讨论-14级-第4学期-第13次.pdf‎|[课件下载]]]
 +
<ol>
 +
  <li>random sampling and Las Vegas。</li>
 +
  <li>abundance of witnesses and one-sided-error Monte Carlo。</li>
 +
</ol>
 +
 +
=2016年5月25日=
 +
[[媒体文件:小班讨论-14级-第4学期-第14次.pdf‎|[课件下载]]]
 +
<ol>
 +
  <li>NEQ-POL。</li>
 +
  <li>NEQ-1BP。</li>
 +
</ol>
 +
 +
=2016年6月15日=
 +
[[媒体文件:小班讨论-14级-第4学期-第17次.pdf‎|[课件下载]]]
 +
<ol>
 +
  <li>去随机。</li>
 +
  <li>reduction of the probability space size。</li>
 +
  <li>conditional probabilities。</li>
 
</ol>
 
</ol>

2016年6月15日 (三) 12:42的最新版本

2016年2月24日

[课件下载]

  1. 字母表、词、语言。
  2. 判定和优化问题。
  3. P和NP。

2016年3月2日

[课件下载]

  1. 判定问题和优化问题。
  2. P。
  3. NP。
  4. NPC。

2016年3月9日

[课件下载]

  1. 伪多项式时间算法。
  2. strongly NP-hard。
  3. 参数化。

2016年3月16日

[课件下载]

  1. Lowering Worst Case Complexity of Exponential Algorithms。
  2. branch-and-bound。

2016年3月23日

[课件下载]

  1. local search的基本概念。
  2. hill climbing。
  3. very large-scale neighborhood search。
  4. Multi-start methods。
  5. Stochastic hill climbing。
  6. Tabu search。
  7. local search的性能。
  8. 应用。

2016年3月30日

[课件下载]

  1. 用0-1规划建模。
  2. rounding。
  3. 广义的relaxation。

2016年4月13日

[课件下载]

  1. 近似算法的基本概念。
  2. MIN-VCP。
  3. SCP。
  4. MAX-CUT。
  5. greedy和local search。

2016年4月20日

[课件下载]

  1. 算法4.3.4.1。
  2. 算法4.3.4.2(用于SKP)。
  3. 算法4.3.4.2(用于KP)。
  4. 算法4.3.4.7。
  5. 算法4.3.4.11。

2016年4月27日

[课件下载]

  1. 算法4.3.5.1。
  2. 算法4.3.5.4。
  3. 算法4.3.5.18。
  4. TSP问题实例的划分。

2016年5月4日

[课件下载]

  1. dual approximation algorithms。
  2. dual PTAS for BIN-P。
  3. PTAS for MS。
  4. 近似算法复习。

2016年5月11日

[课件下载]

  1. 随机算法的基本概念。
  2. Las Vegas算法。
  3. Monte Carlo算法。
  4. 随机优化算法。
  5. 随机算法的设计范式。

2016年5月18日

[课件下载]

  1. random sampling and Las Vegas。
  2. abundance of witnesses and one-sided-error Monte Carlo。

2016年5月25日

[课件下载]

  1. NEQ-POL。
  2. NEQ-1BP。

2016年6月15日

[课件下载]

  1. 去随机。
  2. reduction of the probability space size。
  3. conditional probabilities。